Ecosystem services in grasslands: evidence, trade-offs and restoration

James Bullock

NERC Centre for Ecology and Hydrology jmbul@ceh.ac.uk

Ecosystem services – definitions and types

Grasslands – 13% of Earth's surface

Figure 3 - Distribution of dominant GLC-SHARE Land Cover Database.

- 01 Artificial Surfaces 02 Cropland
 - 03 Grassland

Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

- 04 Tree Covered Area 05 Shrubs Covered Area 06 Herbaceous Vegetation
- 07 Mangroves 08 Sparse Vegetation 09 Baresoil
- 10 Snow and Glaciers + Antarctica

11 Water bobies Antartica

tartica	
Artificial Surfaces	01
Cropland	02
Grassland	03
Tree Covered Areas	04
Shrubs Covered Areas	05
Herbaceous vegetation, aquatic or regularly flooded	06
Mangroves	07
Sparse vegetation	08
Baresoil	09
Snow and glaciers	10
Water bodies	11

Figure 5 - GLC-SHARE distribution of land cover types

Semi-natural grassland in UK ~ 1.69M ha ~ 7% of land surface Improved grassland = 21%

Bullock et al (2011) UKNEA Semi-natural grasslands chapter

Semi-natural grassland – huge losses over the 20th C

Hooftman & Bullock 2012. Biol Cons

(Semi-natural) grassland – a 'fluid' habitat

Bullock et al (2011) UKNEA

Fluidity seen within landscapes; e.g....

Table 6.12 The final services and goods provided by Semi-natural Grasslands.									
Service Group	Final ecosystem service	Goods and benefits							
Provisioning	Livestock: forage for cattle, sheep, etc.	Food (meat, milk), fibre (wool), possibly enhanced quality of meat and milk							
	Standing vegetation: biomass crops	Possibly fuel							
	Crops: pollination and pest control spillover	Food (crops)							
Cultural	Environmental settings: valued species and habitats, agricultural heritage, archaeological heritage, grazing for rare livestock breeds, ecological knowledge, training areas	Physical and psychological health, social cohesion, recreation and tourism, UK research base, UK military training							
Regulating	Climate regulation: sequestration and storage of carbon and other greenhouse gases	Avoidance of climate stress							
Provisioning	Water quantity: storage of water and recharging of aquifers	Potable water, water for food production, flood protection							
(Purification: reduced pollution and storage of pollutants	Clean air, clean water, clean soils							
Regulating	Wild species diversity: plant genetic diversity, seed for restoration projects	Genetic resources, bioprospecting, recreation and tourism, ecological knowledge							

Bullock et al (2011) UKNEA

Forage for livestock – evidence in the UKNEA

- Much lower production than improved grasslands (<30% dry matter)
- Lower digestibility than improved grasslands (60-80%)
- Higher plant diversity increases production in the absence of fertilisers
- Little evidence that 2ndary metabolites in SNG are beneficial (e.g. against parasites)
- Inconsistent evidence that forage from SNG produces better meat
- Good evidence that cheese flavour, etc better from animals on SNG (France)
- Association with traditional breeds (cultural services)

Crop pollination & pest control – evidence in the UKNEA

- SNG certainly support pollinators & pest natural enemies
- Some evidence that pollinators 'spillover' from SNG onto crops
- Little evidence that pest natural enemies show such spill-over (less mobile)

Greenhouse gases & carbon – evidence in the UKNEA

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

- According to the Countryside Survey (15cm depth) SNG soils store high levels of carbon (acid = 82 t/ha, neutral 62 t/ha)
 - compared to arable (43 t/ha)
 - and improved (61 t/ha)
 - and even woodland (66 t/ha)
- But data could be better
- GHG probably lower than in improved – lower stocking rates (methane) & fertilisation (nitrous oxide)
- Little evidence that plant richness increases carbon storage

Water quality & quantity – evidence in the UKNEA

- Little data
- Storage of water less than under woodland or scrub
- But more than under arable or improved grass
- Less soil compaction than under intensive grazing - decreased flood risk
- Low intensity management results in lower pollution – lower fertiliser & pesticide, but also better ability to store, e.g, N.
- Little evidence that plant richness enhances water quality or storage (although legume content may be important)

Cultural services – evidence in the UKNEA

- Many aspects: heritage, recreation, tourism, education, aesthetics, religion, etc
- SNG can be linked with many aspects of cultural services
- But hard to study & quantify
- People differ in their likes & dislikes based on experience, knowledge, geography, etc
- Evidence that many people respond more to landscapes rather than local biodiversity ('cultural landscapes')

Trade-offs – production vs other services

Table 6.14 Suggested direct relationships between major ecosystem services of Semi-natural Grassland. + positive, — negative, 0 no relationship. Biodiversity (plant species richness) is included to illustrate its important role in many services. In each case, the relationship is one of cause and effect (hence the focus on a direct relationship); the cause is the column title and the affected service is in the row. Unfilled cells indicate that no direct relationship is expected.

Cause	Rare breeds	Plant wild relatives	Pollination	Pest control	Livestock production quantity	Livestock production quality	Greenhouse gas storage	Water quality	Water flow	Soil structure	Biodiversity
Effect											
Cultural services	+	+	+		—	+					+
Rare breeds					—						0
Plant wild relatives					—						+
Pollination					—						+
Pest control					-						0
Livestock production quantity	0					—				+	+
Livestock production quality	0				-						+
Greenhouse gas storage, etc.					—/0					+	+
Water quality					—					+	+
Water flow					—					+	
Soil structure					—						
Biodiversity	0		+							+	

What about floodplain meadows?!

Somerset Levels – positives and negatives

- with thanks to Mike Acreman
- Peat extraction 9% of UK supply
- Local products Cheddar cheese

- Recreation 7,000 visits pa to RSPB reserves
- Heritage wet soils preserve archaeology & paleoecology
- Social cohesion wetlanders, farming communities
- Flood alleviation River Parrett floodplain 6.8M m³
- Climate less CO₂ but more methane production from wetter soils
- Disease historical & future malaria risk

Acreman et al (2011) Hydrol. Sci. Journal

Trade-offs in managing the Somerset Levels

Raised water levels Benefits

- Wetland birds, etc
- Recreation
- Archaeology
- CO₂ reduction

but

- Reduced flood protection
- Methane production (when water table <10 cm)
- Reduced grazing quality (10% less hay, 40% less liveweight gain on aftermath under Tier 3)

Acreman et al (2011) Hydrol. Sci. Journal

SNG undervalued in terms of single ecosystem services?

Mapping and Assessment of Ecosystems and their Services

Indicators for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020

nd Report - Final, February 2014


```
Centre for
Ecology & Hydrology
NATURAL ENVIRONMENT RESEARCH COUNCIL
```


Importance of Broad Habitat for delivering the ecosystem service

Direction of change in the flow of the service

- ↑ Improving
- Some improvement
- No net change
- Improvement and/or
- deterioration in different locations Some deterioration
- Deterioration
- ∼ Unknown

Semi-natural grasslands to deliver multiple services

Semi-natural Grasslands present opportunities for delivering multiple services while requiring relatively low energy inputs

In contrast to improved grassland, SNG:

- store more carbon and produce less nitrous oxide & methane
- allow greater water infiltration rates and enhanced storage
- produce less pollution
- provide recreation, aesthetic & spiritual resources, etc
- might be manipulated floristically to increase production, carbon storage
- albeit with lower overall animal production

Designing landscapes for multiple services (& biodiversity)

Bassenthwaite Catchment – modelling possible futures, synergies & trade-offs with the LUCI model

Legend

- Existing wading bird & other wetland habitat
- Other identified "priority habitat"
- No existing identified habitat or suitability for wading bird habitat
- Opportunities to establish additional wading bird habitat

Existing wet grassland, and opportunities to establish further grassland

Designing landscapes for multiple services (& biodiversity)

Bassenthwaite Catchment – modelling synergies & trade-offs with the LUCI model

Impacts of land use change scenarios

Wessex BESS (Wiltshire chalk landscape) – stakeholder input on possible futures & modelling of impacts, using InVEST

CE OF THE

Impacts of land use change scenarios

Wessex BESS (Wiltshire chalk landscape) – stakeholder input on possible futures & modelling of impacts, using InVEST

- 1) Agricultural intensification/expansion
- 2) Urban expansion
- 3) Floodplain management
- 4) Mineral gas exploitation
- 5) Increased land use by military
- 6) Biofuel expansion....

Restoring semi-natural grassland for biodiversity & services

Bullock et al (2012) Trends in Ecology and Evolution

Well-researched restoration methods for semi-natural grassland

Globally – restoration of biodiversity benefits services

Analysis of 89 real-world restorations - tropical/temperate, aquatic/terrestrial

- Restored systems have 25% more services & 44% more biodiversity than degraded
- But pristine systems have 25% more services & 16% more biodiversity than restored

Centre for Ecology & Hydrology Natural environment research council Rey Benayas, et al 2009 Science

Wetland restoration trajectories – incl. floodplains.

Meta-analysis by Moreno-Mateos et al 2012

- 621 wetlands across the world
- Conclude recovery is slow
- Hydrology (water storage, flooding, ...) recovers rapidly
- Biodiversity components = 77% of target, even after 100 yr
- But animals recover more rapidly than plants
- Storage & cycling of biogeochemicals varies (overall 74% after 100 yr) – C & N take a long time to recover
- Larger wetlands recover more rapidly
- Recovery more rapid in warmer climates

(Wet) grassland ecosystem services into the future

From UKNEA chapter on freshwaters

- Semi-natural grasslands can provide multiple services
- Along with moderate animal production
- Probably suffered the most losses of any semi-natural system
- Restoration can work, but complete recovery is a long process
- Landscape planning should consider multiple ecosystems and their interactions in supporting biodiversity and services
- All this requires research & synthesis
- Rather than assumptions ('expert opinion') about service provisioning, links to biodiversity & restoration success