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Abstract

Many studies have investigated the impact of nitrogen (N), phosphorus (P) and potassium 

(K) on grassland in terms of vegetation production, composition and species richness, 

however few have investigated the impact of P addition on floodplain meadows and none 

have addressed the effect of P availability on N mineralization and N uptake. It has been 

suggested by several researchers that net N mineralization increases with increasing P 

availability in the soil, which implies the effects of P on vegetation could be in part 

mediated by N, however this has never been tested directly.

This thesis tests the hypothesis that net nitrogen mineralization increases with 

increasing phosphorus availability in the soil. A replicated P addition experiment in the 

field has been used in conjunction with performing multiple cuts throughout the growing 

season to investigate the allied effect of nutrient removal. The biomass harvested was 

analysed for N and P content to estimate N and P uptake by the vegetation. A laboratory 

incubation experiment was also used to investigate the effect on N-mineralization rate of 

adding P to soil cores.

The field experiment revealed that the addition of P in combination with N  

produced a significant increase in vegetation N uptake, and that P was also significant in 

explaining plant species composition. However, addition of nutrients N  and P had no 

effect on species richness and vegetation community change was driven by temporal 

changes in water regime. The incubation experiment demonstrated that P addition 

increased N mineralization in the soil cores where significantly increased levels of NH4+ 

were detected with increasing P concentration. Above-ground biomass was primarily 

limited by N, although the increase in N offtake in the treatment that added both P and N  

indicates co-limitation. The cutting trial revealed that peak nutrient offtake occurred later



in the growing season with the addition of P; maximum nutrient removal was mid-June 

for unfertilized plots and mid-July for P fertilized plots indicating that cutting date may 

need to be flexible on this vegetation type.
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CHAPTER 1. INTRODUCTION

1.1 Biodiversity

Biodiversity is the genetic and phenotypic variation within ecosystems and communities 

consisting of the sum total of all the plants, animals, microbes and fungi on Earth (Dirzo 

& Raven 2003). The five major drivers of biodiversity loss on a global scale according to 

Sala et al. (2000) are land-use, climate, atmospheric CO2, nitrogen deposition and acid 

rain, and biotic exchanges (deliberate or accidental introduction of plants or animals to 

an ecosystem). They identified that the highest driver of biodiversity loss in grasslands 

would be land use changes, and the highest driver of biodiversity loss in northern 

temperate areas would be land use changes and atmospheric nitrogen deposition.

When averaged across biomes, land use change is the driver thought to have the 

most impact on biodiversity loss by the year 2100 (Sala et al. 2000), this is thought to be 

due to the changes in habitat availability and consequent habitat loss. Tilman et al. (2001) 

have predicted that 109 hectares of natural ecosystems will be converted to agricultural 

land by 2050, if  past human activities of food consumption, population growth and 

dependence on agricultural land continue. This would also be accompanied by increases 

in nitrogen and phosphorus driven eutrophication of terrestrial, aquatic, and near shore 

marine ecosystems. Therefore, large-scale nutrient enrichment is considered to be an 

important threat to biodiversity conservation.

International conventions seek to minimise biodiversity loss, climate change, CO2 

emission and nitrogen deposition. In 2002 at the Johannesburg World Summit on 

Sustainable Development, 192 countries committed to a significant reduction in the 

current rate of biodiversity loss at the global, regional and national level by 2010 

(Convention on Biological Diversity, 2010). This was termed the Convention on 

Biological Diversity (CBD). However despite limited local successes, the rate of 

biodiversity loss did not slow down (Butchart et al. 2010). Following on from this, at its
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tenth meeting in Nagoya in Japan in 2010, the CBD adopted a revised and updated plan 

for biodiversity for the period from 2011 to 2020 including the Aichi biodiversity targets, 

which are a set of strategic goals and targets to drive action on biodiversity.

In response to the global commitments made in Nagoya, the UK government 

published the UK ‘biodiversity 2020’ which is a national strategy for wildlife and 

ecosystem services. It sets out the Government’s ambition to halt overall loss o f  

England’s biodiversity by 2020 (DEFRA 201 la). One of the targets is to improve wildlife 

habitats and to create quality goals for sites of special scientific interest (SSSI). The UK 

biodiversity action plan (BAP) priority habitats are those that were identified as being the 

most threatened, and requiring conservation action. The list was first published in 2007 

and then updated in 2011, and includes 1149 species and 65 habitats which span 

terrestrial, freshwater and marine ecosystems (DEFRA 201 lb).

1.2 Floodplain meadow decline

One of the habitats under threat from land-use change, and a UK BAP priority habitat, 

are floodplain meadows. Floodplain meadows are a type of wet semi-natural grassland 

that are cut annually for hay in midsummer followed by aftermath grazing in August. 

They are internationally recognised as a habitat worthy of conservation; some are 

designated as Special Areas for Conservation (SAC) under the habitats directive as they 

support rare and unique plant communities, large populations of breeding, migratory and 

wading birds and are important for invertebrates such as dragonflies and water beetles 

(Joyce & Wade 1998). The high alpha diversity of these habitats gives them interest in 

terms of their conservation value, ecology, and aesthetics thus many of these sites have 

been designated Sites of Special Scientific Interest (SSSI).

2
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Throughout the last century, floodplain meadows have severely declined in the UK 

and Europe. The main reasons for this decline are agricultural intensification, such as 

fertilizer application, and gravel extraction, urban development and water abstraction 

(Fuller 1987). The most typical plant community which is restricted to lowland floodplain 

habitats soils is the Alopecurus pratensis- Sanguisorba officinalis (MG4) grassland as 

classified by the National Vegetation Classification (Rodwell 1992). This grassland type 

has undergone severe decline over the last century with less than 1500 hectares remaining 

in England and over 90% is nationally or internationally designated (Jackson & McLeod 

2000). MG4 grasslands are productive species-rich communities (up to 38 species per m2) 

sensitive to changes in hydrology, management and nutrient inputs, which require 

agricultural management in order to maintain their productivity and diversity (Bakker & 

Society 1994; Smith et al. 2000). Plant communities in floodplain meadows are strongly 

influenced by fluctuations in water-table depth (Gowing et al. 1997), with experimental 

field studies demonstrating that minor shifts in hydrological regime can alter species 

assemblages and diversity (Go wing & Spoor 1998; Go wing et al. 1998; Leyer 2005; 

Beltman, Willems & Giisewell 2007). These grasslands have also been subjected to 

increasing management intensity since the 1940s following the increased use o f fertilizers 

to increase hay productivity for livestock (Hopkins & Hopkins 1994). Many grassland 

and floodplain sites have been abandoned across Europe due to alterations to agricultural 

policies and changes in hay trading (Cop, Vidrih & Hacin 2009) which can lead to change 

in community composition by reduction in species richness and dominance o f taller forbs 

and graminoids (Jensen & Schrautzer 1999). Mowing is one of the most commonly 

applied techniques to restore species-rich grasslands on floodplains subject to 

abandonment and nutrient enrichment (Grootjans et al. 2002). By removing taller species, 

slower growing herbs are encouraged by through a reduction in the competition for light 

(Bobbink & Willems 1991; Hellstrom et al. 2006). Cutting also removes nutrients from

3
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the system which accumulate in the standing crop, and can lead to a net export of nitrogen 

and phosphorus (Koerselman & Verhoeven 1995).

Changes in nutrient availability to grassland plant communities, either by reduction 

or increase, can be damaging to both the vegetation community and the hay crop by 

reducing species richness, which has both conservation and economic implications such 

as decreases in overall site diversity, and a reduction in the size of the hay crop 

(Manchester et al. 1999). To maintain the productivity of MG4 grassland, it requires 

inputs of nutrients to replace those harvested in the annual hay-crop (Gowing et al. 2002). 

Typically floodplain meadow communities have an intermediate soil fertility (5-15 mg 

kg 1 Olsen extractable phosphorus) (Gilbert, Gowing & Wallace 2009). This is due to 

inputs of nutrients such as phosphorus in floodwaters from point sources such as sewage 

works, but also via diffuse pollution from phosphorus bound to soil particles being 

washed into water courses and subsequently deposited by floodwaters (Mainstone & Parr

2002). The main input o f particulate phosphate, however, is from agriculture (Mainstone, 

Parr & Day 2000). Major sources of nitrogen inputs are by deposition o f atmospheric 

nitrogen through traffic pollution and combustion of fossil fuels (predominantly NO3") or 

in the reduced form of ammonia (NH4+) mainly from agriculture (Bobbink, Homung & 

Roelofs 1998; Stevens et al. 2004; Venterink et al. 2006). However, some sites have also 

experienced nutrient deficiency as a result of flood protection measures restricting 

flooding and hence replacement of nutrients which could lead to a decline in the quality 

and quantity of hay yield (van Oorschot, Hayes & van Strien 1998).
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1.3 Historical nutrient studies

Many studies have investigated the effect of nutrients on composition o f neutral semi­

natural grasslands by means of field fertilization experiments. It is well documented that 

the addition of inorganic fertilizers can cause significant botanical change when applied 

to diverse grasslands, increasing the dominance of some species whilst decreasing species 

richness overall (Lawes, Gilbert & Masters 1882).

Nutrient addition experiments are a far from new approach in studying how 

nitrogen (N), phosphorus (P) and potassium (K) affect the botanical composition of 

grasslands. Lawes and Gilbert started nine field experiments on arable systems between 

1843 and 1856 which are now known as the ‘Classical’ experiments (Catt & Henderson 

1993). Their main objectives were to measure the effects on crop yields o f inorganic 

compounds containing nitrogen, phosphorus, potassium, sodium and magnesium. 

Initially these experiments were set up to investigate crop yields which had important 

economic implications. Today, with certain habitats under threat, their effect on species 

richness as well as yield is also of primary importance to ecologists, land managers and 

farmers alike (Poulton 2006). The Park Grass Experiment was started in 1856 and is the 

oldest experiment on permanent grassland in the world. Initially it was designed to 

investigate the effect of manure and inorganic fertilizers on crop yield, but within 2-3 

years it was evident that such treatments were having an effect on the species composition 

of the vegetation. The treatments consisted of various combinations of P, K, Mg, Na, N  

and incorporated controls (nil plots) where no fertilizer or manure was applied. 

Comprehensive species surveys have been done annually on the treatment plots between 

1991 and 2000 (Poulton 2006) displaying marked differences; all the original treatments 

imposed in 1856 have caused a decline in species number compared to the original sward 

due to changes in soil fertility, management and annual nutrient inputs. The main
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botanical effects were as follows: 1) the most diverse flora was on the nil plots 2) applying 

P alone has decreased the number of species, but no more than any other treatment. 3) 

supplying N with P has greatly reduced the number of species with fewer forbs and larger 

proportions of grasses such as Festuca rubra and Anthoxanthum odoratum 4) applying K 

with P increased the amount of legumes (Poulton 2006; Silvertown et a l  2006).

The first significant papers were published by Lawes & Gilbert (1863), Lawes & 

Gilbert, (1880) and Lawes, Gilbert & Masters (1882) which described the results of plant 

species abundance, hay yield and soil chemistry. Since then, multiple papers have been 

published as a result of the Park Grass Experiment using more recent data (Silvertown 

1980; Dodd et al. 1994; Tilman et al. 1994; Silvertown et al. 2006) Silvertown et al. 

(1994) investigated rainfall, biomass variation and community composition in the Park 

Grass Experiment. They found that biomass was a better prediction of compositional 

variation than rainfall due to a) rainfall not being the exclusive influence on plant growth 

b) rainfall selectively favoured grasses in the community which competed asymmetrically 

for light when rainfall was high, therefore the magnitude of the competition depended 

more on biomass than upon rainfall directly. Some studies have also investigated herbage 

yield in the Park Grass Experiment (Thurston, Williams & Johnston 1976; Jenkinson et 

al. 1994; Hill & Carey 1997) where yields of hay varied between treatments from the start 

of the experiment, although declined on most plots in the first 60 years. The largest yield 

was on the plots receiving the most N  plus P, K, Na, Mg, although analysis in long-term 

trends in yield between 1891 and 1992 showed no significant trends with time. The Park 

Grass experiment had no replication, but provides a template for nutrient addition 

experiments on other sites and habitats which can be applied to this study. Results 

indicated that P increased legumes (Silvertown et al. 2006) and therefore suggests further 

research is necessary in relation to the effects of P on species composition.
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More recently, a number of nutrient-addition trials have been carried out on 

grasslands to establish the extent of botanical change at different levels of nutrient 

application. Fertilizer experiments at Tadham Moor Site of Special Scientific Interest 

(SSSI) in the south-west of England have investigated the effects of nutrients on grassland 

diversity and community composition (Mountford, Lakhani & Kirkham 1993; Tallowin 

et al. 1994; Kirkham, Mountford & Wilkins 1996; Stevens et al. 2012). Kirkham, 

Mountford & Wilkins (1996) applied different levels of N, P and K to diverse grasslands 

coupled with a cutting experiment to ascertain the effect o f cutting date and N application 

on species diversity and abundance. They investigated if the effects of fertilizer 

application could be mitigated by applying most of the annual N  application after hay 

cutting. They found an individual species response where Trifolium pratense became 

abundant where P and K were applied with nil or a low level o f N (similar to that found 

in the Park Grass study), but all legumes were suppressed at high rates of N application, 

particularly in conjunction with P application. They also found that P was more important 

than N in determining biomass production and botanical change. This is another example 

of where P has been shown to have significant effects on grassland vegetation, but is not 

the primary aim of the study. Thus further work is needed to focus on P as a principal 

hypothesis.

In 1990 a field trial began at Colt Park on the Ingleborough National Nature 

Reserve in northern England to investigate the multiple effects of management such as 

different types of grazing, cutting date, fertilizer application and seed application on plant 

species diversity and productivity o f a species poor agriculturally improved upland 

meadow (Smith et al. 2000). Species number increased in plots which received no mineral 

fertilizer, when the sward was cut in mid-July and when it was grazed in both Spring and 

Autumn. They determined that this was the best management regime for the restoration
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of high plant species diversity in combination with sowing seed of absent species. The 

effect of management on soil microbial community was also investigated at Colt Park 

(Bardgett & McAlister 1999; Smith et al. 2003). Management changes were found to 

induce shifts in the soil microbial community, and were indicative of improvements in 

the efficiency o f nutrient cycling in these grasslands. Despite these studies, there is a lack 

of management experiments on grasslands in the UK; especially with regards to altering 

cutting date within growing seasons. There has been no cutting management trial on MG4 

grassland to establish optimum mowing time in terms of nutrient removal and vegetation 

diversity.

The Rengen Grassland Experiment (RGE) in Germany is one o f the oldest 

continuously managed experiments worldwide, which was established in 1941 in the Eifel 

Mountains of Germany on low productive grassland (Hejcman et al. 2010a). It consists 

of five fertilizer treatments, and an unfertilized control on a mountainous hay meadow 

which is cut twice annually (Schellberg, Moseler & Kuhbauch 1999). The treatments 

were applied annually and were a combination o f Ca, N, P, and K. Results o f the treatment 

applications found that P addition caused the greatest difference in vegetation structure 

and composition with tall grasses dominating such as Alopecurus pratensis, 

Arrhenatherum elatius and Trisetum flavescens, N enrichment was not found to be 

detrimental to plant species richness if  applied on its own (Hejcman et a l  2007). They 

also found that biomass was most positively affected by P and K soil contents under N 

application and the most powerful predictors of plant species composition were soil P, K, 

Mg contents and biomass production (Hejcman, Schellberg & Pavlu 2010). The biomass 

N:P ratios were consistent with N or P limitation, with the simultaneous application of 

NPK decreasing N concentration in above-ground biomass indicating that there is not
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necessarily a positive relationship between applied nutrients and their plant biomass 

element concentrations (Hejcman et al. 2010b).

The above studies are representative of keystone nutrient addition experiments 

across Europe and the UK, and demonstrate that the addition of N and P have effects on 

the vegetation composition, species richness and biomass production of grasslands. 

However, there is no published work from MG4 floodplain meadows and controlled 

nutrient addition experiments within this habitat would be necessary to demonstrate 

which of the major nutrients limit productivity o f this particular sward. These studies 

focus mainly on the effects of N addition on grasslands, or a combination of nutrients; 

effects of P have been documented as a subsidiary part of the experiments, therefore it 

would be beneficial to investigate P addition individually, its influence on the vegetation 

dynamics, but also on nutrient cycling in floodplain meadows. These studies identified P 

as causing significant botanical change (Silvertown et al. 2006; Hejcman et al. 2007) and 

above-ground production changes (Kirkham, Mountford & Wilkins 1996), which warrant 

further research.

1.4 Limiting nutrients

Plant production is usually limited by the availability o f nutrients N, P and less frequently 

K or a combination of these nutrients (Verhoeven, Koerselman & Meuleman 1996). 

Vegetation responds to nutrient availability rather than the total nutrient in the soil, 

therefore it is important to understand what controls the availability of these nutrients. 

Nutrient limitation is one of the most important factors influencing the structure o f plant 

communities, as species richness tends to decline with increasing nutrient availability 

which favours growth of competitive species capable of rapid resource acquisition and
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biomass production (Al-Mufti et al. 1977; Grime 1979). Grassland systems are mainly 

thought to be N limited, although there have been some clear observations made by a 

number of studies that P is also important in limiting the productivity of the vegetation 

(Kirkham & Wilkins 1994; Janssens et al. 1998; Wassen et al. 2005; Ceulemans et al. 

2011). In the majority of terrestrial ecosystems, nitrogen and phosphorus are the main 

limiting nutrients controlling plant productivity and microbial functioning (Vitousek & 

Howarth 1991; Elser et al. 2007). However, both P and N cycles do not necessarily exist 

independently of one another; and studies have attempted to investigate the dynamics of 

P and N and their possible interactions (Pastor et al. 1984; Oorschot et al. 1997; Janssens 

et al. 1998). These interactions may influence the vegetation by increasing biomass and 

playing an important role in grassland diversity. Furthermore the availability of N and P 

due to fertilization can strongly influence microbial activity (Olander & Vitousek 2000).

The concept of N:P ratios originated from many of the Dutch studies on grasslands 

(Koerselman & Meuleman 1996; Verhoeven, Koerselman & Meuleman 1996; Giisewell, 

Koerselman & Verhoeven 2003). A cost effective tool to determine if  above-ground 

production is limited by N or P was developed, without the need to perform nutrient 

addition experiments, by assaying the N and P concentrations of herbaceous plant 

material and combining these into a ratio (Verhoeven, Koerselman & Meuleman 1996). 

Koerselman & Meuleman (1996) suggested that plant populations with high N:P ratios 

(>16) would be enhanced by fertilization with P, and populations with low N:P ratios 

(<14) would be enhanced by fertilization with N. However, contrary to these findings 

Giisewell, Koerselman & Verhoeven (2003) found that N:P ratios of co-limited 

vegetation or plant populations were not confined to the narrow range of 14 to 16 and 

concluded that N:P ratios were a useful tool, although not exclusively suitable for 

predicting how changed nutrient supply will affect plant species composition. 

Alternatively they can be used to investigate how the relative availability o f N and P
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influence ecological processes and can assist in monitoring and evaluating the effects of 

conservation management (Giisewell, Koerselman & Verhoeven 2003).

The availability of nitrogen and phosphorus to the vegetation is affected by the 

microbial processes occurring in the soil. Nitrogen mineralization is the conversion of  

organic N to NH4+ (ammonium) by decomposers in the soil and is the process in the soil 

that controls the N availability to plants (Harmsen 1955; Abbasi, Shah & Adams 2001). 

Once in the form of ammonium, N is available either for direct use by plants or for further 

transformation into nitrate via nitrification. Some researchers have suggested that net N  

mineralization increases with increasing P availability in grasslands (Ruess & Seagle 

1994; Oorschot et a l  1997). Janssens et a l, (1998) suggest a relationship between soil 

available P and organic matter N mineralization which can influence soil available N. 

Thus plants may increase uptake o f N in response to P addition. This theory suggests that 

P is important for plant productivity even in N limited systems and suggests an indirect 

effect on N  availability. However, this is yet to be tested experimentally in the field. If P 

influences the rate of N  mineralization, this could change how much N is taken up by the 

vegetation and stored, which could be investigated by adding P to experimental plots and 

harvesting the above ground vegetation biomass at regular intervals and analysing the 

harvested biomass for N. A few studies have also found a link between available P and 

ammonium production in soils (Troelstra et a l  1990; Ruess & Seagle 1994). Similarly 

fertilizer experiments on grasslands in the UK have indicated that N availability is 

increased by the application of P (Kirkham & Wilkins 1994). However, this has never 

been tested as an independent hypothesis on UK floodplain soils.

Despite numerous studies into N and P enrichment and broad literature on this 

subject, nutrient addition experiments are still relevant in establishing the effects of N  and 

P on plant species composition in grasslands. As MG4 grassland is a species-rich
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community, it is likely to be sensitive to changes in nutrient availability and therefore a 

useful system to test whether N  or P limit the productivity o f the vegetation. Based on the 

current literature (especially many of the Dutch studies) and on the findings of 

(Verhoeven, Koerselman & Meuleman 1996) and (Giisewell, Koerselman & Verhoeven

2003), they are more likely to be N limited. Furthermore data from current MG4 hay 

analysis suggests the MG4 N:P ratio is approximately 8 (therefore below 14) which 

supports this (Gowing et al. 2002). Controlled fertilization on a stand of MG4 vegetation 

would provide further insight into nutrient limitation, biomass production and species 

composition on wet meadows. Testing the type of nutrient limitation is secondary to the 

hypothesis of P addition increasing M mineralization. It is also of nature conservation 

importance, so the results have practical application for floodplain meadow conservation.

1.5 Management

The availability of N and P on grasslands can be controlled to some extent by vegetation 

management. The traditional management of MG4 floodplain meadows consists o f a 

midsummer hay cut, followed by aftermath grazing in the autumn and winter. This 

maintains high species diversity and prevents accumulation of nutrients in the soil which 

can lead to changes in the productivity, composition and diversity of grasslands (Bakker 

1989). Generally cutting and removal o f the hay-crop with aftermath grazing is more 

successful in nutrient removal than either cutting or grazing alone (Smith et al. 2000). 

This increases reductions in soil fertility and opens up germination gaps in the sward for 

seedling establishment (Walker et a l  2004). In the Netherlands, it has been demonstrated 

that regular vegetation harvesting creates a net loss of P from the system relative to N  

(Koerselman, Bakker & Blom 1990), therefore wet grasslands with a long history of 

regular cutting would be P limited and irregularly mown fens would be N limited
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(Verhoeven, Koerselman & Meuleman 1996). MG4 floodplain communities are 

relatively productive typically yielding 4 1 ha'1 y"1, requiring a mesotrophic soil to support 

this productivity. Nutrient availability at these sites needs to be managed in order to 

maintain productivity and species diversity. This can potentially be achieved by altering 

the timing and frequency of hay cutting; as more frequent mowing can result in net export 

of nutrients from the system.

1.6 The need for this study

Findings from these long-term studies both in the UK and Europe indicate that there is 

still disparity in determining which nutrients have most effect on plant communities in 

terms of species richness and composition. Previous studies (Verhoeven & Schmitz 1991; 

Verhoeven, Koerselman & Meuleman 1996; Olde Venterink et a l  2003) have attempted 

to identify which nutrients are most important in limiting vegetation biomass, diversity 

and species-composition in grasslands, which are important when considering 

conservation of these habitats.

The primary focus of this thesis is on fertilization by P, and hypothesises that P 

addition may enhance the rate of N mineralization in the soil, and therefore increase the 

uptake of N by the vegetation but never been tested experimentally on UK floodplain 

meadows. P addition may also affect the plant community and above-ground biomass of 

the vegetation (Tilman et al. 1994; Kirkham, Mountford & Wilkins 1996; Ceulemans et 

a l  2011). Effects of nutrient addition on the plant community may also be mitigated by 

altering cutting dates or increasing cutting frequency, which is also a principal objective 

of this thesis. Further details and background description can be found in the introduction 

of each chapter relevant to specific research questions.
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1.6.1 Research Aims

This study aims to investigate the effects of P addition on N mineralization and thus on, 

biomass production and ultimately plant-community composition. Investigations will be 

made into whether the addition of P increases N mineralization by means of laboratory 

experiments, and field nutrient addition experiments.

A second aim is to assess the effects of different cutting dates on the nutrient balance of 

meadows. This aspect of the study may give insight into the conservation and restoration 

management of grasslands in terms of optimising guidance on cutting regime.

The following research objectives will be experimentally tested in this project.

1.6.2 Objectives

•  To determine if  P addition increases N mineralization.

• To determine if  N offtake increases in response to P addition.

•  To determine if  N offtake peaks earlier in the growing season in response to P 

addition.

• To determine if  functional composition of the vegetation changes in response to 

P addition.

•  To determine if  altering cutting date alters the species richness and composition 

of the vegetation.

• To determine if  changes to N offtake are a result of biomass changes or tissue 

composition.

• To determine if  forb cover increases with more frequent cutting.
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1.7 Thesis structure

Within this thesis there are four experimental chapters, which are self-contained 

experimental studies. Chapter 2 and chapter 3 have the same experimental setup, which 

consists of a cutting experiment, the design of the experiment is described in full in 

chapter 2 and includes the methodology for both chapters. Chapter 4 and chapter 5 have 

a different experimental design to the previous chapters, which is described fully in 

chapter 4. This part of the thesis is a factorial nutrient addition experiment. Control plots 

from this experiment are also utilised in chapters 2 and 3 as part of the cutting experiment, 

thus there is a two-fold experimental design which is linked between chapters. The 

experimental methodology is described in full in chapter 2 and chapter 4, and only 

summarised in other chapters.

Chapter 2 investigates the effect of cutting date on hay yield and nutrient off-take 

from MG4 grassland, and investigates the optimum time to cut a meadow in terms of hay 

yield, but also removing nutrients from the system. The addition of P on vegetation above­

ground biomass and its effects on nutrient off-take and peak standing biomass is also 

studied. Weather conditions and the effect on above-ground biomass are also explored by 

attempting to correlate rainfall, soil moisture deficit and hay yield. Chapter 3 considers 

the effect of cutting date on the botanical composition of floodplain meadows, in terms 

of species richness and also community composition.

Chapter 4 focusses on nutrient addition to floodplain meadows and the effect of 

nitrogen (N) and phosphorus (P) on the nutrient content and yield of the above-ground 

biomass, and the effect on N:P ratios and nutrient limitation in floodplain soils. It also 

includes the results of laboratory incubation experiments and the in-situ use of plant-root- 

simulator probes (PRS-probes) to test the effect of P addition on nitrogen mineralization.
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Chapter 5 investigates the effect of nutrient addition on the botanical composition of 

floodplain meadows, and any temporal changes occurring over the duration of the project.
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Chapter 2

The effect of cutting date on hay 
yield and nutrient offtake

17
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2.1 Introduction

2.1.1 Traditional hay cutting in meadows

Floodplain meadows are traditional agricultural systems which have been managed over 

hundreds of years. Historically, they were cut for hay when the grass reached its optimal 

state in terms of feed value, typically the last week in June or the first week in July or 

‘midsummer’ (Baker 1937; Brian 1993). Cattle, or other livestock, then grazed the land 

throughout the autumn, and were removed in the winter and spring to allow the hay to 

grow once more (Brian 1993). In many cases, this is still the same today, although there 

are other external influences which have altered the thinking on deciding when to cut a 

meadow. Not all meadows are managed in a traditional manner anymore, due to variation 

in land ownership and a variety of uses for meadows and their hay. Many meadows have 

their cut delayed or fixed to a set date in July in response to agri-environment scheme 

agreements (such as Environmental Stewardship or Higher Level Stewardship) which can 

encourage less variation in management (Warren, Lawson & Belcher 2007), whilst others 

are cut much later to allow species either to set seed for aesthetic reasons or to encourage 

certain species of flora or fauna. In addition, if  the ground is too wet or flooded it can be 

impossible to cut the hay at the desired date. Therefore management of these once 

traditional systems is not a simple matter (Gowing et al. 2010).

The diagram below illustrates the annual hay cycle (figure 2.1). With more hours 

of daylight and increasing temperatures in the spring and summer, the vegetation grows 

to support a wide variety of invertebrates and birds. When the hay is at its maximum 

productivity, it is cut in ‘midsummer’, which removes nutrients from the system. After 

the hay cut, animals graze the meadow or grasslands ingesting further nutrients, but 

returning them to the system via waste and excretion. The animals are removed from the
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meadow as conditions get wetter through the autumn and winter. Low rates of 

evapotranspiration over winter lead to a rise in the water table and river levels, often 

resulting in flooding. Deposition of nutrient rich sediment which may be rich in P by 

floodwaters, replaces nutrients which are lost from the system by cutting. Nitrogen is 

added to the system in small quantities throughout the year by atmospheric deposition. 

The cycle of nutrients in the management of a hay meadow is critical to maintain the high 

diversity of grasses and plants. If nutrient levels become too high or even too low, then 

the diversity of plants will change to reflect the changing conditions. As weather cycles 

vary in different years, management of meadows need to be flexible in order to maintain 

a balance of nutrients that will maximise vegetation diversity (Gowing et a l 2010).

Nutrients from the soil are
utilised for plant growth

Atmospheric deposition

Ct
Spring

Atmospheric d eposition

*
Summer

Autumn
0

Atmospheric d eposition

Increased '4 
rainfall and 
nutrient input 
via floodwaters

Hay cut and nutrient 
removal

Winter
Atmospheric deposition

A '

Nutrient cycling via grazing and dung

Figure 2.1 Typical hay cycle in one year on a floodplain meadow (Floodplain meadows website; 
Gowing et al. 2010)
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2.1.2 Nutrient cycling

Nutrients particularly nitrogen (N), phosphorus (P) and potassium (K) can enter 

floodplain meadows from numerous sources; atmospheric deposition, farmyard manure, 

and flood-deposited nutrient enriched silts. Removal of the annual hay crop in the form 

of biomass can balance these inputs providing the nutrient input does not exceed the 

output.

Plant growth on floodplain meadows and other wetlands is commonly limited by 

the availability of N, P and K, or a combination of these elements, and biomass production 

can therefore be enhanced by the addition of one or more of these nutrients (Verhoeven 

& Schmitz 1991; Verhoeven, Koerselman & Meuleman 1996). Nitrogen exists in the 

atmosphere in the form of N 2 and can become available to plants by the process of 

nitrogen fixation by rhizobia bacteria that nodulate the roots of legume plants (Bardgett 

2005). The majority o f soil N is in the form of organic nitrogen compounds which are not 

directly available to plants, but can be converted to available ammonium ions (NH4+). 

Ammonium ions not immobilized or taken up by higher plants are often converted to 

nitrate ions (NO3") by the process of nitrification, which occurs readily in agricultural 

soils (Abbasi, Shah & Adams 2001). Nitrate ions are very soluble and can be lost easily 

from the system due to leaching in drainage waters or by denitrification, which occurs 

when soils become warm and saturated and nitrates are lost to the atmosphere as N 2 . Crop 

removal represents a loss and therefore output of N; inputs are a result of atmospheric N  

deposition and particulate N in floodwaters (Abbasi, Shah & Adams 2001; Bardgett 

2005).

In contrast to N, most P in the soil exists as insoluble forms that are unavailable 

to plants. Phosphate (PO43 ) is the main inorganic form of P which is available to plants.

20



CHAPTER 2. THE EFFECT OF CUTTING DATE ON HAY YIELD AND NUTRIENT
OFFTAKE_________________________________________________________________

This phosphate can be divided into two forms, firstly the labile P pool which consists of 

phosphates on mineral surfaces which can be easily absorbed by plants roots and is 

immediately available to microbes (Bardgett 2005). Secondly, P can precipitate within 

calcium, iron and aluminium compounds that are insoluble and unavailable to plants 

(Simpson et a l  2012). Inputs of P in most systems is due to weathering of bedrock, 

however on floodplain meadows the majority o f P input comes from sediment deposition 

in floodwaters (Berendse et al. 1994) (figure 2.2). P and N are removed from the system 

in the annual hay cut, which is the main nutrient output (Verhoeven, Koerselman & 

Meuleman 1996).
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Figure 2.2 Schematic diagram of the N and P cycles (Berendse et al. 1994)
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In the majority of terrestrial ecosystems, nitrogen and phosphorus constrain plant 

productivity and microbial functioning (Vitousek & Howarth 1991; Elser et al. 2007). 

However, both P and N cycles do not necessarily exist independently of one another, 

studies have attempted to investigate the dynamics of P and N and their possible 

interactions (Pastor et al. 1984; Oorschot et al. 1997; Janssens et al. 1998), which 

influence the vegetation by increasing biomass and playing an important role in grassland 

diversity. Furthermore, the availability of N and P due to fertilization can strongly 

influence microbial activity (Olander & Vitousek 2000). This study primarily focusses 

on fertilization by P addition and hypothesises that P addition may further enhance the 

effects of N on microbial processes by increasing the rate of N mineralization in the soil, 

and therefore increasing the uptake of N by the vegetation. This can be measured by 

analysing plant nutrient content for N and multiplying this percentage with the above 

ground biomass weight of the vegetation to give rise to a plant N offtake value. Janssens 

et al. (1998) have suggested that soil available P can limit organic matter mineralization 

by the depression of micro-organisms which affect the nitrification and mineralization 

processes. Similarly other studies have found that N mineralization is positively 

correlated with the available soil P pool (Troelstra et al. 1990; Cadisch, Schunke & Giller 

1994; Ruess & Seagle 1994). This central hypothesis is discussed in more depth in chapter 

4 of this study, but is also relevant to this current chapter as we will investigate N  offtake 

in floodplain meadows after the addition of P. Increased rate of N uptake (measured by 

plant N offtake) by the vegetation may occur earlier in the growing season with the 

addition of P if  N mineralization is increased (figure 2.3), because a general characteristic 

of unfertilized species rich grasslands is that they have a considerably lower growth rate 

in the Spring and early Summer compared with agriculturally improved
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grasslands (Tallowin 1997). No such studies have been carried out on MG4 floodplain 

communities to investigate herbage production and N offtake of the vegetation after P 

addition. Multiple cuts made throughout the growing season and subsequent analysis of 

the vegetation samples for N, could establish if  P has increased vegetation above-ground 

biomass, and if  N offtake has been increased. The timing of the hay cuts in the growing 

season can also be investigated in conjunction with this.

P addition
<D
03

OMQ>

Growing season March-September

Figure 2.3 Theoretical N offtake curve produced over time and brought forward with the addition 

of P.

Cutting date on floodplain meadows is critical to the development of the 

vegetation (Smith & Jones 1991). Cutting too early prevents some species from setting 

seed, which could lead to their disappearance. However cutting too late, can encourage 

tall growing bulky species to dominate, shading out other species and gaining a strong
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competitive advantage (Bobbink & Willems 1991). Aside from maintaining species 

richness and vegetation structure, hay cutting also influences soil nutrient concentrations 

by the removal of minerals accumulated in the standing crop (Oomes 1990), and a net 

export of P and K from the system (Koerselman & Verhoeven 1995). Land abandonment 

and failing to cut a meadow promotes the occurrence of competitive species, while regular 

mowing removes a disproportionately higher proportion of tall competitors (Buckland et 

al. 2001; Gerard et al. 2008). It also reduces the competition for light, giving the 

opportunity for smaller competitors to establish (Leps 1999; Kotowski & van Diggelen

2004).

2.1.3 Hay yield

Floodplain meadows are very productive systems, with a net annual above-ground 

primary production across Europe (NAPP) ranging from 300 to more than 4000 g dry 

weight (DW) m '2 year depending on the dominant vegetation species (Tetter et al. 

1988; Kaplova, Edwards & Kvet 2011). Although a review of hay production from 

lowland grasslands in the UK (Tallowin & Jefferson 1999) suggest that the dry matter 

yields from different unfertilized agriculturally unimproved grasslands in the UK is much 

lower than this, ranging from 150 g m'2 to 600 g m'2 when first cut in late June or early 

July. Different national vegetation community (NVC) grassland and floodplain meadow 

communities (Rodwell 1992) will give rise to different biomass yields ranging from 200 

g m'2 to 800 g m 2 (Peeters & Janssens 1998), although data available for some NVC 

communities is limited. Tallowin & Jefferson (1999) collated dry matter yields from 

different NVC types from numerous studies in order to compare the yields; these included 

MG1, MG5, MG6, MG7, MG8, MG10, MG13, M16, M23 and M24. Dry matter yields
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obtained from a single hay cut in mid-summer from a sample of semi-natural grassland 

containing MG4 vegetation community, ranged from 300-600 g m"2 (Gowing et al. 

2002). On grassland sites where fertilizer has been applied (levels o f 100 kg N ha y _1 and 

37.5 kg P ha y _1) the dry matter yield can increase by 50-100% (Kirkham & Wilkins 

1994; Kirkham & Tallowin 1995) and their botanical composition may change towards 

species poorer communities such as agriculturally improved grasslands Lolium perenne- 

Cynosurus cristatus grassland (MG6) (Mountford, Lakhani & Kirkham 1993; Kirkham, 

Mountford & Wilkins 1996). Although grassland production on various NVC  

communities may differ, there is also variability within communities and between 

different seasons, due to different soil properties between sites, and climatic conditions 

between years. The variation in hay yield may be lower in more species-rich than in 

species- poor swards due to species richness providing a buffer against climatic variation 

(Dodd et a l  1994).

The biomass production in floodplain meadows and grassland systems is very 

sensitive to changes in weather, particularly rainfall (Smith 1960; Dodd et al. 1994). 

Smith (1960) established a relationship between meadow hay yields, and estimated 

‘actual’ transpiration during the growing season, which in turn is related to soil moisture 

deficit. In his study, data for actual hay yield and transpiration were combined to calculate 

the predicted yield for specific areas across the UK. It could also be used to explain the 

variability in dry matter yields between years on the same site.

Traditionally, hay meadows have been cut in late June or early July, which gives 

rise to the highest hay yield. Generally unfertilized grasslands have a considerably lower 

growth rate in the spring and early summer than that of agriculturally improved or 

fertilized grasslands, which means that the peak yield may be achieved later in the season
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in unfertilized grasslands (Robson 1981). Tallowin & Jefferson (1999) plotted dry matter 

data from various nutrient addition experiments from across the UK, which were cut at 

different times in the growing season (figure 2.4). Improved and unimproved grasslands 

were compared; fertilized plots represent a mixture of N, P and K additions ranging from 

44-200 kg ha y 4 of N, 21-150 kg ha y 1 of P and 52-390 kg ha y '1 of K (graph from 

Tallowin and Jefferson (1999), data source from (Tallowin 1997)). Dry matter yield was 

highest in the agriculturally improved grassland, and reached its ceiling earlier than in the 

unfertilized semi-natural grasslands. Another much earlier experiment by Gately, Ryan 

& Doyle (1972) investigated the effect of applying high amounts of N on the yield, total - 

N and nitrate-N content of herbage over the growing season, from data collated from 24 

sites across Ireland. The amount of N applied ranged from 0-672 kg ha y '1. They found 

the dry matter yield was greatest on the plots cut on 14th July and increased with a higher 

concentration of N fertilizer application (figure 2.5).
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0 20 
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Figure 2.4 Changes in dry-matter yield (DM) during the early summer in unimproved, unfertilized 
semi-natural grasslands (o) and agriculturally improved and/or fertilized grasslands (•). 
(Tallowin and Jefferson, 1999).
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Figure 2.5 Seasonal effect of N fertilizer on the mean dry matter yields of herbage (Gately, Ryan 
& Doyle 1972)

They also measured the total N percentage in the dry matter from each hay-cut to 

investigate the effect of increased N fertilizer on the critical concentration of nitrate in the 

hay. The peak for the total N in the dry matter was in April and October (figure 2.6) based 

on single cuts from March to October; this was attributed to peak N mineralization levels 

and therefore increased nitrate offtake in April and a ‘late season effect’ which could be 

due to the slowing down of growth rate with reduced light intensity in October.
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Figure 2.6 Effect of sampling dates on the mean total-N content of herbage (Gately, Ryan and 
Doyle, 1972)

In a more recent study on a wet grasslands Kaplova, Edwards & Kvet (2011) 

found that above-ground biomass was twice as large in the high nutrient area (1689.5 g 

trf2 y"1) compared with a low nutrient area (874.4 m"2 y"1) within their study in the growing 

season. The high nutrient area had 1.16% of total nitrogen and 0.18% of total phosphorus 

in the soil, compared with the low nutrient area which had a total nitrogen percentage of

0.87 and total P of 0.21, therefore the high nutrient area was driven by increased N rather 

than increased P. They also found that biomass increased in both areas until the middle 

of July (200 days from 1st Jan), after which it declined in the low nutrient area, but 

continued to increase until September in the high nutrient area (see figure 2.7). Their 

study site however was in the Czech Republic with different climatic conditions from the 

UK. This pattern of biomass removal within the growing season has not been investigated 

in the UK on MG4 floodplain meadows, from cuts made at the same site.
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Figure 2.7 From Kaplova, Edwards and Kvet, (2011). Log and standard error monthly total 
biomass (g DW m"2) in the low and high nutrient areas for 2007 and 2008 growing seasons. 
*p<0.05, **/?<0.01, ***/?<0.001

Although there have been many studies investigating disturbance of meadows and 

grasslands through cutting, there have been a limited number investigating mowing 

regime within a growing season, and specifically the effect of cutting date itself on the 

nutritional value of the hay crop in terms of nutrient removal from the system. There have 

been studies investigating hay yield of various vegetation communities, although data
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have been collated and compared from different sites rather than sequential cuts from the 

same site (Tallowin 1997; Tallowin & Jefferson 1999; Gowing et a l  2002). The aim of 

this study was to investigate the pattern of sequential biomass harvests through the 

growing season, with and without P addition; the biomass yield (with and without P 

addition) and the nutrient content of the hay crop through the growing season. In turn this 

should provide useful information with regards to optimum cutting date in terms of 

maximum nutrient removal from floodplain grasslands and maximum hay crop yield. 

Interaction between biomass production and soil-moisture deficit is also investigated in 

order to produce a model to predict and explain variation in hay yield from soil-moisture 

conditions, between the same vegetation communities. This chapter addresses the 

following questions:

1. What is the effect of P addition on the hay yield in floodplain meadow 

MG4 vegetation? (Page 45)

2. To determine if  hay yield can be predicted based on rainfall using the 

Smith calculation (Page 50)

3. What is the effect of P addition on the peak offtake of N from floodplain 

meadows? (Page 54)
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2.2 Methods

2.2.1 Study site

Leaches Meadow is situated close to the Oxfordshire-Buckinghamshire border, near 

Bicester in the UK (figure 2.8a). The study site is an undesignated MG4 site owned by 

Berkshire, Buckinghamshire and Oxfordshire Wildlife Trust (BBOWT). It is part of the 

Upper Ray Meadows nature reserve which is a core part of BBOWT's Upper River 

Ray project area, one o f  their ‘Living Landscapes’ schemes. The River Ray lies within 

the Upper Thames catchment area. The land around it is a broad flat valley with Oxford 

clay, and is liable to flooding. The Upper Ray Meadows Nature Reserve is located along 

the A41, two miles west of Kingswood in Buckinghamshire and consists of an area of 

144 hectares (BBOWT 2008). The site is managed in the manner o f a traditional 

unimproved hay meadow, with a hay cut in mid-July followed by aftermath grazing by 

sheep in the autumn (Mick A ’Court, pers. comm.). The vegetation is typical of an MG4 

community; the dominant forb is Sanguisorba officinalis with patches o f Carex riparia 

and Carex disticha within lower lying areas within the meadow. Dominant grasses are 

Alopecurus pratensis, Cynosurus cristatus, and Agrostis stolonifera.

The field study was conducted during the 2010, 2011, 2012 and 2013 growing 

seasons. Climate conditions differed between the years with the main differences 

occurring in rainfall and mean air temperature during this period. 2012 was considerably 

wetter than the other years, although had a slightly colder growing season (figure 2.9 and 

table 2.1). Evapo-transpiration was greatest overall in 2011, but was highest in July 2013, 

and lowest in the growing season of 2012 (figure 2.10).
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Figure 2.8a) Location map of Leaches Meadow and b) alignment of blocks at the site labelled 1- 
5

2010 2011 2012 2013
Annual rainfall (mm) 582.4 467.6 892.4 639.2
April-July rainfall (mm) 109.8 141.1 407.5 150.5
Mean air temp (°C) 8.47 10.09 8.99 8.99
April-July mean air temp (°C) 12.4 12.75 11.75 12.02
Annual ET (mm) 495.2 531.9 473.0 495.4

Table 2.1 Annual and seasonal rainfall and temperature means for 2010, 2011, 2012 and 2013
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Figure 2.9 Mean monthly rainfall and temperature for 2010, 2011, 2012 and 2013
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Figure 2.10 Evapotranspiration per month for each year.
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2.2.2 Experimental design and treatment additions

In April 2010, experimental plots were laid out using a randomized block design, each 

block consisting of twenty-four 2 m x 2 m plots. Five replicate blocks were set up aligned 

adjacent to one another in order for the grazier to avoid the experimental area when 

cutting the majority of the meadow (figure 2.8 b). After initial soil analysis, all blocks 

were uniform in terms of Olsen extractable P level and appeared homogenous in terms of 

vegetation community. Each 2 x 2 m plot was marked out with wooden tent pegs, using 

a GPS system (Leica RX1200) that is accurate to 2 cm for horizontal distances, to record 

the coordinates of each point so the plots could be relocated in subsequent years, even if  

pegs were lost (Dodd 2011).

Different treatments were applied to each of the 24 plots as follows (figure 2.11): 

10 plots received 25 kg P ha y'1 (P+), two plots received 75 kg P ha y"1 (hereafter referred 

to as P2), 10 plots were controls thus received no P (P0), and two plots received 50 kg N  

ha y'1 (N+). The reason for N addition in conjunction with P is to determine whether N  

availability is limiting the productivity of the P plots. The treatments were applied in three 

doses 2 weeks apart at the end of April 2010 and again in April 2011, in order to give the 

vegetation and microbial communities an opportunity to absorb the nutrients, thus 

avoiding losses through runoff and leaching. P added to the plots was in the dissolved 

form of sodium dihydrogen phosphate (NaH2PC>4), which was applied directly onto the 2 

x 2 m vegetation plot dissolved in 1 litre of water (table 2-2). N was applied in the same 

way to two additional plots within each block, one receiving P and one not, in the 

dissolved form of ammonium nitrate (NH4NO3). Deionised water was added to the 

control plots to account for the difference in moisture.
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The plot and block design incorporated two major field experiments. Firstly, a 

cutting experiment where biomass cuts were made at nine specific dates throughout the 

growing season in 2010, 2011 and 2012. These cuts were timed to reflect a consistent 

increment in biomass for each cut (table 2.3). On each cutting date, the treatment plots 

(P+) and the control plots (P0) were cut, in order to examine the difference in biomass 

and vegetation composition between the two treatment groups. Secondly, a factorial 

experiment was incorporated into the block design, in order to investigate the effects of 

N, N and P together, and P at a higher dose. Two of the plots within each block were also 

cut twice in order to investigate the effects on the vegetation composition of greater 

nutrient removal. The first two chapters of this thesis include results from the cutting 

experiment only. The factorial experiment will be described in more detail in chapters 

four and five.

1 2 3 4 5 6 7 8 9 10 11 12

C9 P0 2 cuts Ph- C6 P0 N+PO C2 P+ C9 P+ C 4P0 C8 P+ C8 PO C3 P+ C6 P+ C l P0

C4 Ph- 02  P0 P2C 2 C5 PO 2 cuts PO C7 PO P2C 1 C1 Ph- C7 Ph- C5 Ph- C3 P0 N+P+

13 14 15 16 17 18 19 20 21 22 23 24

Figure 2.11 Treatment block consisting of 24 randomly allocated plots.

Per plot 2 x 2 m (4m2)

Treatment P/N form Annual dose (kg ha 1) Annual dose g/nf Water (L) g of N/P per year ® .
application

g of chemical per 
application (Ammonium 
nitrate or sodium 
dihydrogen phosphate)

P0 Control 0 0 1 0 0.0 0

P+ NaH2P 0 4 25 2.5 1 10 3.3 12.91

N+ NH4N03 50 5 1 20 6.7 19.05

P2 NaH2P 0 4 75 7.5 1 30 10.0 38.73

Table 2.2 P and N addition treatments per plot and per dose.
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2.2.3 Cutting treatments

In 2010 and 2011, above ground biomass cuts were made on nine dates throughout the 

growing season (table 2.3). The cut vegetation was split into functional groups 

(graminoids, forbs and legumes) per plot, oven-dried and weighed to establish the dry 

weight biomass, before testing for N and P to obtain the nutrient content of each 

functional group over time. Each 1 m2 area in the centre o f a 2 x 2 m plot was cut to 4 cm 

above the ground surface using electric clippers, this being the average cutting height of 

most conventional cutter bar and agricultural mowers (Tallowin & Jefferson, 1999), after 

which the rest o f the remaining ‘buffer’ area o f the plot was cut to the same height using 

electric and petrol strimmers. In 2012, cuts were repeated at similar dates, but due to 

access problems caused by prolonged flooding, some dates were modified. In 2013, the 

final year of the experiment, only the factorial plots were cut in order to obtain difference 

in biomass values between treatment N and P treatment plots (see chapter 4 for further 

detail).

Cut date 2010 Cut date 2011 Cut date 2012

Cl 26-Apr-10 27-Apr-11 18-May-12
C2 10-May-10 13-May-11 19-May-12
C3 24-May-10 28-May-11 25-May-12
C4 07-Jun-10 08-Jun-ll 07-Jun-12
C5 14-Jun-10 16-Jun-ll 21-Jun-12
C6 21-Jun-10 22-Jun-11 26-Jun-12
C7 28-Jun-10 28-Jun-ll 05-Jul-12
C8 12-Jul-10 14-Jul-l 1 19-Jul-12
C9 26-Jul-10 26-Jul-ll 02-Aug-12

Table 2.3 Cutting date for each of the nine plots in 2010, 2011 and 2012
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2.2.4 Vegetation sampling and nutrient analysis

The 1 m2 biomass samples collected from each plot were stored at -14°C (which preserves 

the nutrient concentrations of vegetation samples, R. Bobbink, personal communication), 

after which it was sorted into functional groups (graminoids, forbs and legumes) and dried 

at 55°C for 3 days. The dry weight of the total biomass and of each functional group was 

then measured. The vegetation samples were then ground to less than 1 mm (Retsch 

ZM200 centrifugal mill) and analysed for P and K using a dry ashing method modified 

from Chapman & Pratt (1961) followed by acidification with 1% HNO3 and analysis with 

ICP-AES (Leeman Prodigy). Total C and N were determined using the LECO-2000® 

Elemental Auto-analyser.

Species cover-abundance was obtained for the P2 plots, N plots and C6 plots in 

the first two years of the experiment (6 plots per block, 30 plots in total). All 120 plots 

were surveyed in this way in the fourth and final year o f the experiment in 2013. Relative 

abundance was obtained using a visual scoring method for the percentage vegetation 

cover of all species present in the lm 2 sampling plot. Species dominance data were also 

obtained in these same plots using a vertical point quadrat to record ‘first hit’ at 50 points 

per plot, in 2010. This method was not used in subsequent years as correlation between 

cover and point quadrat values were high enough to justify use o f one method only.
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Photograph 2.2 1 x 1 m plot cut for biomass in June 2013
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2.2.5 Water Table Monitoring

Soil-water levels were monitored from November 2010 to July 2013, using three 

automated pressure-transducing loggers known as ‘divers’ (Divers, Eijkelkamp NL), 

which were installed between blocks one and two, blocks three and four, and blocks four 

and five. The wells were 120 cm deep and 5 cm diameter, dug using a Dutch Auger. Each 

diver was enclosed within the well of perforated plastic pipe, and fitted with a cap to 

prevent direct entry of surface water, precipitation and debris. Each diver recorded the 

pressure and temperature within the well at three hour intervals. A barometer placed 

nearby the site was used to record atmospheric pressure in order to calibrate each diver to 

give a water-table depth. Each diver was downloaded every year onto a handheld data 

storage device. Diver-Office (Schlumberger Water Services) was then used to combine 

the diver data and barometer data to give a water-table depth.

2.2.6 Data analyses

The above-ground biomass data were natural log transformed to achieve normality and 

homogeneity o f variance. Then the data were analysed using repeated measures ANOVA  

to determine if  changes in biomass levels between plots receiving P (P+) and controls 

(PO) changed differently over time throughout the growing seasons. Statistical differences 

between biomass data, offtake N and tissue content data from PO and P+ plots within each 

year were determined using General Linear Models in SPSS 21 using P treatment, block 

and year as independent variables.
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2.2.7 Cumulative dry weight and growing day degrees

Cumulative growing degree days (CGDD) were calculated for each year of the 

experiment (figure 2.12) using the following equation (McMaster & Wilhelm 1997). The 

base temperature used was 4°C:

Equation 1

J~J jQ  _  T m in

A mean for each cut date was calculated and then plotted against the mean dry weight of 

each cut (C l, C2 etc.), in plots which received P and the controls. A one way ANOVA  

showed no significant difference in the cumulative dry matter yield (incorporating 2010, 

2011 and 2012 figure 2.19) between the plots receiving P and the control plots. CGDD 

was used rather than a mean cutting date for the three years to take into account the 

difference in temperature between the three years and eradicating any difference in dry 

matter yield caused by the seasonality.
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Figure 2.12 Cumulative growing day degrees for 2010, 2011, 2012 and 2013

2.28 Smith Calculation

Soil is at field capacity when it is holding the maximum amount of water against the pull 

of gravity. When it starts to dry, it is said to be below capacity; the quantity of water 

needed to bring the soil back to field capacity is known as the soil moisture deficit. Large 

soil moisture deficits lead to wilting plants and the cessation of transpiration. Actual 

transpiration has been calculated from potential evapotranspiration figures (obtained from 

the MET office). For calculation purposes, Smith (1960) assumed that the soil was at field 

capacity at the start of the growing season each year. If the rainfall exceeds transpiration, 

then the soil remains at field capacity and the actual transpiration (AT) is equal to 

potential evapotranspiration (ET); if the rainfall is less than ET, a potential soil moisture 

deficit develops. In this way using data from 2010 to 2013, actual transpiration has been 

calculated (equation 2).
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Sum of AT has also been calculated for each yield harvest date (C1-C9) and then plotted 

against yield for each year. Incorporating meteorological data in order to predict yield has 

been used as per Smith (1960) using the following equation. T represents the estimated 

actual transpiration and N is the number of years since 1946.

Equation 2

Calculated Yield = 7.05 + 1.56T + 0.27N

2.3 Results

2.3.1 Dry weight through the growing season (2010,2011,2012)

There were nine harvests in each year timed from April until August. Each cut was 

performed at the same time or as close as possible to a set date in each year, with the 

exception of 2012 when summer flooding prevented access to the site.

Overall 2012 was the most productive year with a mean total above-ground 

biomass for all plots (C1-C9) of 2682.4 g/m2 , compared to 1976.6 g/m2 in 2010 and

1547.5 g/m2 in 2011 which is significant (p<0.05) (figure 2.13). Maximum above-ground 

biomass occurred in mid July in 2010, the end of June in 2011 and the end of July in 

2012. No cuts were made in August due to site restrictions.
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Figure 2.13 Mean and standard error dry weight per cut in 2010, 2011, 2012 on days since 1st 
January in each year. Values represent mean of P+ and P0 treatments combined for each cut.

Aboveground biomass levels increased through the growing season in 2010 for both 

control plots (P0) and treatment plots (P+), with maximum biomass occurring in mid-July 

for both groups, and then decreasing in the C9 plots in the final cut (figure 2.14). Biomass 

was greater in the plots receiving P, with this trend become more obvious from cut 5 in 

June, although this was not statistically significant. The greatest difference in total 

biomass between the treatment plots and controls was in the C8 cuts on 14th July 2010. 

Aboveground biomass in 2011 was much more erratic (figure 2.15), especially in the 

control plots, and was a less productive year compared with 2010. The biomass between 

treatments and controls was also not significant for 2011. Above-ground biomass levels 

between the treatment and control plots was not significant in 2012 either (figure 2.16), 

however there was a steadier increase throughout the growing season, with a small plateau 

in June. P+ plots were slightly more productive than the controls, except for the final C9 

cut. There was no block effect in 2010 or 2012, but block was significant for dry weight 

in 2011.
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Figure 2.14 Mean and standard error 2010 above-ground biomass dry weight from each cut for 
treatment plots and control plots
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Figure 2.15 Mean and standard error 2011 above-ground biomass dry weight from each cut for 
treatment plots and control plots
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Figure 2.16 Mean and standard error 2012 above-ground biomass dry weight from each cut for 
treatment plots and controls
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Water-table depth was monitored from November 2010 until the end of the 

experiment (see appendices for raw output from divers). Output from divers is in the form 

of pressure which has to be converted into water-table depth by compensating raw data 

with atmospheric pressure, and then subtracting elevation obtained by using the GPS 

Leica RX1200 for each plot. The mean water-table depth between each year was 

significantly different (p<0.001); with 2012 being the wettest year (figure 2.17). Within 

years, the water-table depth was significantly different between all blocks in 2010 with 

the exception of block 1 and block 3. Water-table depth was significantly different 

between all blocks in 2011 with the exception of block 1 and block 5. Water-table depth 

was significantly different between all blocks in 2012. According to figure 2.17, block 3 

represents the wettest block and block 2 the driest. Negative values do not represent 

permanently wet plots, as the values used are mean water-table depths.
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Figure 2.17 Mean and standard error water-table depth per block, per year. 0.00 represents ground 
level, positive values represent below ground and negative values represent above ground i.e. 
flood events. NB 2010 represents only data from November and December divers

Water-table depth was built into the general linear model for testing significance of 

above-ground biomass values between treatments, and used as a covariate in the analysis. 

Although, this made no difference to the outcome in terms of significance in dry weight 

between treatments.

Calculated growing day degrees (cgdd) was used instead of mean cutting date to 

take into account the difference in temperature between the three years and to eradicate 

any difference in dry matter yield caused by the seasonality (figure 2.18). However,
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regardless of cutting date and cgdd, there was still no significant difference between the 

yield of plots receiving P and the controls (p=0.730) (figure 2.19).
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Figure 2.18 Mean and standard error DW per cut per year against cumulative growing day degrees 
for 2010, 2011 and 2012
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Figure 2.19 Mean and standard error cumulative dry weight (sum of dry weight for 2010, 2011 
and 2012) against mean cumulative growing day degrees for P0 and P+ plots combining all 
experimental years

The mean error between calculated yield and actual yield according to Smith (1960) was 

2.1% with a correlation coefficient of 0.95 when total annual yield was plotted for each 

year between 1940 and 1955. Applying the same equation to yields obtained for 2010, 

2011, 2012 and 2013 produced a greater mean error, with actual yields exceeding that of 

calculated yield (figure 2.20). Mean percentage error between actual and calculated yield 

including 2013 was 10.8% (figure 2.20). The Pearson correlation between calculated and 

actual yield for all years was 0.86.
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Figure 2.20 Actual yield and calculated yield for each experimental year
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2.3.3 Plant tissue nutrient content and offtake.

Total nitrogen percentage (N %) and total phosphorus percentage (P %) in the biomass 

samples from each cut decreased gradually through the duration of the growing season 

(figure 2.21 and 2.22). There was a significant difference in P% between treatment plots 

and control plots, but not for N%. The N% and P% values were used with the total 

biomass DW from each cut to produce an offtake value for each plot (kg ha"1 y _1) (figure 

2.24 and 2.25).
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Figure 2.21 Mean and standard error N% in above-ground biomass samples through the season 
in P+ and PO plots in 2010
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Figure 2.22 Mean and standard error P% in above-ground biomass samples through the season in 
P+ and P0 plots in 2010

Mean N and P offtake for each cut has been plotted for the growing season of 2010 

(figures 2.24 and 2.25). Both N and P offtake were greater overall in the treatment plots. 

This is significant for P offtake overall (one way ANOVA between groups, /7<0.001) and 

post hoc significant differences between treatment and control for cuts C5, Cl,  C8 and 

C9. There was no significant difference between treatments for N offtake. N offtake 

peaked in the P0 plots in early June (C4), and in the P+ plots in the middle of July (C8). 

P offtake peaked in the P0 plots in the middle of June (C5) and in the P+ plots in the 

middle of July (C8). The N:P ratio of the vegetation biomass from each plot was 

calculated (figure 2.23) and was significantly different between treatment and control 

plots (/?<0.001), in every cut except for C 1, N:P ratio was greater in the control plots than 

the treatment plots. The mean N:P ratio for the controls was 12.7, and for the P+ plots

9.7 which was significantly different (/?<0.01).
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2.4 Discussion

2.4.1 Above-ground biomass yield

Floodplain meadows containing the MG4 community can be productive (Gowing et al. 

2002). The yield achieved from plots cut in this experiment was similar to that of other 

MG4 sites within the UK. Plots cut in July in this experiment yielded the equivalent range 

from 2319 kg ha'1 y'1 to 4172 kg ha'1 y'1 of hay, 2011 being the least productive year and 

2012 being the most productive year (almost double the hay yield of 2011 from the same 

plots). These figures are similar to other UK MG4 sites such as Cricklade North meadow, 

which had a mean hay yield over several years data of 3617 kg ha'1 y'1 (David Massen, 

English Nature pers comm), Mottey meadow which had a mean yield of 4600 kg ha'1 y'1 

(Tim Coleshaw, English Nature pers comm) and the River Ray, Oxon which had a yield 

ranging from 3700-5000 kg ha'1 y'1 (R Lamboume pers comm) (Gowing et al. 2002). The 

variability in yield data achieved from the same plots in different years of this experiment 

is very likely to be related to the variation in rainfall. 2012 was the most productive year, 

and it was also the wettest receiving 892.4 mm of rainfall almost double that of 467.6 mm 

in 2011. Therefore in this case, the productivity of the vegetation in 2010 and 2011 was 

very likely to be limited by the very dry conditions in the growing seasons of 2010 and 

2011. This is reinforced by plotting dry weight against calculated growing day degrees 

for each year, unsurprisingly 2012 exhibited a much higher R2 than either 2010 or 2011 

and a higher Pearson correlation co-efficient, even without taking rainfall into account. 

This demonstrates that above-ground production was highly correlated with temperature 

in 2012 (r=0.98).

The cutting dates spread throughout the growing season in this experiment, aimed 

to show the optimal time to cut a hay meadow in terms of removing the most nutrients
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from the system. A secondary aim to this experiment was to investigate the effect of P 

addition on the pattern of nutrient removal, namely to see if  peak nutrient removal was 

brought forward by the addition of P alleviating limitation on plant growth. The addition 

of P made no significant difference to the above-ground biomass in any year of this 

experiment, although notable trends were that P did increase above-ground biomass in 

2010 and 2012, and that peak above-ground biomass occurred at the same hay cut whether 

P was added or not. For 2010 this was around 12th July and 22nd-29th June in 2011, 

biomass continued to increase beyond the end of July in 2012. Therefore, in this case P 

appears not to be limiting above-ground production despite often being reported as a 

limiting nutrient of species-rich grassland (Janssens et a l  1998; Critchley et al. 2002; 

Wassen et al. 2005).

The N:P ratios reported in this experiment lie between 7 and 14; P plots had a 

mean of 9.7, and P0 plots had a mean of 12.7. Whilst significantly different, both values 

lie well below 14 and therefore according to Koerselman & Meuleman (1996), they are 

indicative of N limitation. Those authors suggested communities with N:P ratios above 

16 would be P limited, whereas those falling below 14 would be N limited, and those 

lying between the two would be co-limited. This suggests that the findings from this 

experimental study site are in fact either N limited or co-limited, so the addition o f N  

rather than P in this case would be more likely to increase vegetation productivity. This 

is contrary to the findings of other studies where P was found to increase productivity of 

grasslands (Kirkham, Mountford & Wilkins 1996; Harpole & Tilman 2007; Hejcman et 

al. 2007), although this is not necessarily the case in systems limited solely by nitrogen 

(Venterink et al. 2006; Semmartin et a l  2007). Ift 2012, above-ground biomass kept 

increasing steadily throughout the growing season, whereas in 2010 it reached its peak
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around 12th July (Cut 8) and around 28th June in 2011. Both 2010 and 2011 were 

exceptionally dry years and therefore plant growth was severely limited by moisture 

deficit. This may have been responsible for the huge variation in yield between plots in 

2011 as species favouring wetter climatic conditions were unable to thrive, hence plant 

growth was restricted regardless of nutrient input. The variation in water-table depth 

between years is also compatible with meteorological data, with 2012 having a much 

shallower water table than 2010 or 2011. The variation in water-table depth between 

blocks is significantly different, which could lead to a variation in plant community and 

the subsequent dry weights of each plot, depending on the baseline existing plant 

community in each plot, prior to the start of the experiment and treatment additions. Block 

and water-table depth were built into the general linear model when testing for significant 

difference between treatment plots, although made no difference to the outcome.

In order to remove some of the variability between years, suspected to be due to 

differences in rainfall, the ‘Smith’ calculation was employed (Smith 1960; see equation 

2). His paper states that yield can be predicted based on a calculation taking rainfall, sum 

of AT and soil moisture deficit into account. This theory was applied to meteorological 

data obtained for Leaches Meadow in order to explain the variability in productivity 

between years. Calculated yield was then plotted against actual yield for each year, and 

for each plot cut within each year. When initially plotted, the calculated yield severely 

overestimated the actual yield achieved, therefore the equation was adjusted to remove 

W ’, which represented number of years since 1946, as it is unlikely the author of the 

paper anticipated its use 60 years into the future. Following the alteration, the Smith 

calculation appears to only slightly underestimate actual yield, with a mean error resulting 

in 10.8%, much higher than 2.1% that the paper suggests. Although there is still a linear 

relationship between actual and calculated yield, an R2 of 0.9448, and a strong positive
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correlation of 0.86. This suggests there is definite relevance to using the Smith calculation 

when predicting yield in hay meadows, but it should be used with caution and to identify 

an estimate of yield rather than to predict accurate yields. Furthermore, the Smith 

calculation does not take water-table depth into account when predicting yield, which 

may account for the percentage error difference between the results of this study and the 

published work in Smith (1960). Including water-table depth into the equation would 

involve water table modelling, and would be site-specific rather than regional, as 

suggested by Smith, which could also account for some of the error. It may also be the 

case that Smith had not accounted for atmospheric N deposition, which would result in 

greater actual yield than calculated yield, especially if  the site is N limited, as suspected.

2.4.2 Plant tissue nutrient content and offtake

Both P% and N% in plant biomass reduced gradually through the growing season, giving 

rise to less nutrient rich hay in the July cuts compared with the plots cut in May. This is 

similar to the findings of other studies where nitrogen content in herbage falls at a similar 

rate in both species-rich unimproved sites, and fertilized grasslands (Gately, Ryan & 

Doyle 1972; Tallowin 1997). This is due to a dilution effect where N and P are diluted by 

the increased growth that occurs in the vegetation later on in the season (the ‘Steenbbjerg 

effect’ Weetman 1989), and the tendency of grass to form seedheads in midseason with 

a consequent lower N content (Gately, Ryan & Doyle 1972). Gately, Ryan & Doyle 

(1972) also reported a Tate season effect’ where higher tissue N content was found in 

some of the sites in October, which was attributed to the slowing in growth rate o f the 

vegetation, and lower light intensity reducing nitrate reductase activity and promoting 

nitrate accumulation.

58



CHAPTER 2. THE EFFECT OF CUTTING DATE ON HAY YIELD AND NUTRIENT
OFFTAKE_________________________________________________________________

With the addition of P, plant tissue N% did not show any increase or significant 

difference from the control plots. However, as expected with the addition of P, plant P% 

was significantly different from the controls indicating that the plants were taking up the 

additional P supplied to them, but not using it for growth. This suggests luxury 

consumption of P by the vegetation (Chapin 1980). To calculate nutrient offtake for both 

P and N, the above-ground biomass yields were multiplied by the tissue N and P 

percentage. Again, the addition of P was not significant in increasing N  offtake, although 

P offtake was significantly increased. This was driven by the increase in tissue P 

percentage taken up by vegetation in the treatment plots. However, there was a trend in 

increased N offtake with the addition of P, just not significantly. Peak N offtake in the 

control plots was on 7th June in 2010 (cut C4), but on 12th July (C8) for the treatment 

plots, and for P offtake peak was on 14th June (C5) for control plots, and 12th July (C8) 

for treatment plots. Therefore, hay cut earlier in the growing season is more nutrient rich, 

but greater nutrients are actually removed from the system if the hay cut is left until late 

June or early July. The results also suggest that sites with elevated soil P or soil N  can be 

cut slightly later (second week in July) in the season to achieve maximum nutrient 

removal if  desired. This was driven by above-ground biomass data, which increased in 

P+ plots in 2010 compared to the controls for every cut date after 21st June, therefore later 

in the season. The nutrient additions were not complete until the end of May in 2010, so 

the vegetation response to the available nutrients may have been delayed in this case.

The response of the vegetation to P, could arise from the trade-offs associated 

with P acquisition. N is required to produce phosphatases, which are released by plants 

into the soil to increase P availability, therefore P limited plants could increase P uptake 

with increases in P availability or N availability, because in turn increasing N availability 

could allow plants to produce more phosphatases. This implies that P limited systems
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could also respond to N deposition in terms of increased productivity (Treseder & 

Vitousek 2001). Alternatively, low P availability might inhibit soil microbial activity 

which breaks down soil organic matter to release available N (Craine & Jackson 2010). 

However in the case of this experiment, N offtake (and assumed N uptake by plants) was 

not increased significantly by the addition of P and made no significant difference to 

productivity, which would certainly be the case if  microbes were stimulated by the 

addition of P alone to increase N supply. Chapter 4 investigates the addition of P and N  

in more detail, by means of a factorial experiment and the subsequent response of the 

vegetation in terms of productivity and nutrient offtake.

2.5 Conclusion

The effect of P addition on the hay yield o f floodplain meadow vegetation from this study 

site was minimal. Although there were slight increases in the yield mid-way through the 

growing season in 2010 and 2011, this increase was not significant. Off-take N was also 

increased with P addition in 2010, but again this was not significant. Changes in the 

offtake of N and P were driven by the variation in above-ground biomass in 2010, and 

the limitation of the site by reduced rainfall and water-table depth. Had biomass not been 

limited by the dry conditions in the growing season of 2010 (and 2011), the difference in 

nutrient offtake may have been significant with the addition of P. However, it is very 

likely that the site vegetation biomass is N limited, and therefore would respond only to 

nitrogen fertilization or a combination of N and P together. This is tested in chapter 4. 

Peak nutrient offtake occurred later in the growing season with the addition o f P, for both 

P offtake and N offtake. Optimum cutting date in terms of maximum nutrient removal 

was therefore mid-June for unfertilized plots, and mid-July for P fertilized plots, although
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in a year with more average rainfall conditions, optimum cutting date would probably be 

slightly later as the vegetation productivity would not be limited by dry conditions. 

Cutting date on this type of vegetation should therefore be flexible and based on a 

combination of factors. This experiment also re-iterated the findings of Smith (1960), that 

hay yield can be predicted by using meteorological data and soil-moisture deficits, but 

must be used with caution, especially in years of atypical rainfall.
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CHAPTER 3. THE EFFECT OF CUTTING DATE ON THE BOTANICAL COMPOSITION
OF FLOODPLAIN MEADOWS

3.1 Introduction

Regular management of wet grasslands and floodplain meadows favours species-rich, 

low-growing herbaceous vegetation which support large populations o f invertebrates and 

ground nesting birds, which are important for nature conservation (Joyce & Wade 1998). 

Species rich wet grasslands are one of the most threatened types of habitat across Europe 

including the UK, and a recent decline in the last century is likely to have been a result of 

changes in management regimes, such as agricultural intensification or abandonment 

(Tallowin et a l  1994; Tallowin & Jefferson 1999; Berg, Joyce & Burnside 2012). These 

habitats are sensitive to changes in hydrological regime, management practices and 

nutrient inputs which can result in a change in community composition and reduction in 

species richness. Typically, floodplain meadows in the UK which have an MG4 NVC 

community (Alopecurus pratensis- Sanguisorba officinalis) are very species rich in terms 

of their plant communities with up to 39 species per m2 (Gowing et al. 2002), which is 

under threat if  these habitats are not managed appropriately. It has been suggested that 

species-rich communities have a greater capability to buffer environmental variability 

than species-poor communities, and that increased biodiversity gives rise to greater 

resistance against ecological disturbance, (Naeem et a l  1994, 2000; Tilman 1999; Foster 

et al. 2002).

3.1.1 Cutting and abandonment

Abandonment or neglect of floodplain meadows can lead to more competitive tussock- 

forming species of larger stature, competing for light and forming dense canopies which 

displace smaller species (Bobbink & Willems 1991; Hellstrom etal. 2006). Abandonment 

issues on floodplain meadows and grasslands are becoming more common due to
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changing economic climate within Europe and uncertainty of funding or ownership. 

Throughout Europe approximately 15 million hectares of formerly managed grassland 

have been abandoned, threatening biodiversity and longevity of these important 

ecosystems (Joyce & Wade 1998) and an urgent need to implement restoration.

Mowing is the most commonly applied technique to restore species richness in 

grasslands which have been subject to nutrient enrichment or abandonment (Grootjans et 

al. 2002). Taller graminoids and more robust plants are removed, allowing smaller herbs 

to compete for light and become established (Bobbink & Willems 1991; Mountford, 

Lakhani & Kirkham 1993). Cutting is preferred to grazing when restoring abandoned 

grasslands as it induces a decrease in nutrients within the biomass more quickly than 

grazing, which returns nutrients back to the soil through livestock excreta (Kayser & 

Isselstein 2005). Grazing also encourages growth of legumes such as Trifolium repens 

which contributes to N  input through N 2 fixation (Pavlu et al. 2007). A few recent studies 

have investigated the effect of reinstating cutting on abandoned grasslands or wet 

meadows: Billeter, Peintinger & Diemer (2007) investigated restoration of abandoned fen 

meadows in Switzerland and whether reinstated mowing techniques after 4-35 years of  

abandonment could increase species richness. They found that after two years o f mowing, 

plant species richness was 11% higher in mown plots than in unmanaged plots, and 

specifically fen indicator species and herbs were increased, whilst graminoids were 

unaffected. Similarly Huhta et a l  (2001) investigated the timing and number of cuts 

within a year to assess the effect on the vegetation of two abandoned meadows. They 

surveyed changes in plant cover and species composition of permanent plots in a formerly 

grazed meadow over a period of six years, in plots that were mown and unmown. They 

found that abandonment led to a decrease in the cover of small forbs, a decrease in the 

cover of grasses and an increase in the cover of tall forbs. The mown plots showed little
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change with respect to the cover of small herbs. This study shows that mowing late in the 

season can be used as a management tool for the maintenance of existing species 

composition and diversity, but not necessarily the control of abandoned grass-dominated 

grasslands.

3.1.3 Cutting frequency

Increasing the number of cuts to a grassland or floodplain within the same growing season 

could potentially lead to a decrease in grassland productivity (Vinther 2006) in favour of 

species richness. This is due to the concentration o f nutrients being higher in the above­

ground biomass at the start of the growing season (April-May) than later on (July-August) 

(Kirkham & Tallowin 1995; Pontes et al. 2007) hence more potential for nutrient removal 

with increasing the cutting frequency throughout the growing season. Increasing the 

number of cuts within a growing season has been investigated for restoration purposes 

after the cessation of fertilizer application (Bakker, Elzinga & de Vries 2002; Hejcman, 

Schellberg & Pavlu 2010), finding that increasing the number of cuts made little or no 

difference to species richness in these grasslands, but has affected species composition 

overall with some species being more tolerant to defoliation and gaining a competitive 

advantage over others.

3.1.4 Cutting and hydrological regime

Hydrological regime is considered to be one of the most important factors in determining 

the vegetation composition of floodplain meadows (Gowing & Spoor 1998; Grevilliot, 

Krebs & Muller 1998; Casanova & Brock 2000; van Eck et al. 2004). Flooding is one of  

the major sources of nutrient inputs (particularly P), whereas mowing is the predominate

65



CHAPTER 3. THE EFFECT OF CUTTING DATE ON THE BOTANICAL COMPOSITION
OF FLOODPLAIN MEADOWS___________________________________________________

method of nutrient export. Investigating cutting regime in conjunction with hydrological 

regime would determine the nutrient mitigation potential o f hay removal in terms of 

species composition and species richness. A study by Gerard et a l  (2008) explored the 

interaction between flood frequency and mowing in determining species composition of 

temperate lowland floodplain meadows in Belgium. They compared the composition of 

annually mown and non-mown vegetation within floodplain sites of differing flood 

frequencies and found that mowing was more important than flood regime in maintaining 

higher numbers of smaller species. Non-mown sites supported higher numbers of taller 

graminoid species. The combination of frequent flooding with annual mowing increased 

species richness attributed to the fact that mowing provides gaps for germination of flood 

imported seeds.

Similarly, Berg, Joyce & Burnside (2012) studied the effect of reinstating mowing 

on two abandoned coastal wet grasslands in Estonia to assess their restoration potential. 

One site was a species-poor lower shore grassland, the other a more diverse tall grassland. 

They found that the lower shore community responded more positively to mowing than 

the tall grassland community, and produced greater changes in composition and species 

abundance. The sites differed in hydrological regime, with the taller grassland being more 

stable in terms of water regime, which suggests that hydrological regimes should also be 

considered when considering restoration of wet grasslands.

3.1.5 Cutting effects on species composition

In terms of individual species response to cutting, Phleum pratense and Agrostis 

capillaris have been found to increase in abundance with later cutting dates, and 

Anthoxanthum odoratum was most abundant in plots cut in August, however Ranunculus
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repens showed a linear trend of declining abundance with date of cut (Kirkham & 

Tallowin 1995). Although Hellstrom et a l  (2006) found that late cutting reduced the 

abundance of Agrostis capillaris. Cutting twice was found to control Carex acuta and 

Carex acutiformis on floodplain meadows, with a double cut within the growing season 

being more effective than the timing of the individual cuts (Newman 2013). When 

comparing cut and uncut swards rather than timing of cut, Agrostis stolonifera had a 

competitive advantage over other species and increased in abundance after five years of 

abandonment (therefore not favoured by cutting) (Berg, Joyce & Burnside 2012), and 

cutting stimulated the abundance of Festuca arundinacea and Festuca rubra. In contrast 

early cutting favoured Poa pratensis, Holcus lanatus and Dactylis glomerata with the 

majority of species favouring being cut in late July on an upland site (Smith et al. 2000).

This part o f the overall experiment investigates the effect of cutting at different 

times in the growing season and cutting frequency on species richness and composition 

in floodplain meadows. To date, there have been very few studies investigating nutrient 

addition on floodplain meadow MG4 grassland, alongside a cutting experiment to 

investigate mitigation of the added nutrients in terms of species composition, on the same 

sward within the growing season. Most studies have concentrated on the effect of cutting 

and mowing frequency for restoration of grasslands following cessation of fertilizer 

application, and have been long-term experiments, rather than short-term mitigation 

experiments for nature conservation. In addition to the timing of the hay cut, the 

frequency of cutting will also be investigated by cutting certain permanent plots twice; 

once in May and once in August. There were nine different cutting dates, and therefore 

ten different treatments (including the plots that were cut twice). This chapter addresses 

the following questions:
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1. Does altering the cutting date of MG4 vegetation change the species 

composition? (Page 73-75)

2. Does altering the cutting date change the abundance of individual species? 

(Page 76-78)

3. Which environmental variables are significant in explaining any variation in 

species composition? (Page 82-83)

3.2 Methods

3.2.1 Cutting treatments

Details of the experimental set up are given in Chapter 2. In 2010 and 2011, above-ground 

biomass cuts were made on nine dates throughout the growing season (table 3.1). The cut 

vegetation was split into groups (graminoids, forbs and legumes) per plot, oven dried and 

weighed to establish the dry weight biomass, before testing for N  and P to obtain the 

nutrient content of each functional group over time (see Chapter 2). Each 1 m2 area in the 

centre of a 2 x 2 m plot was cut to 4 cm above the ground surface using electric clippers, 

this being the average cutting height of most conventional cutter bar and agricultural 

mowers (Tallowin & Jefferson 1999), after which the rest o f the remaining ‘buffer’ area 

of the plot was cut to the same height using electric and petrol strimmers. In 2012, cuts 

were made throughout the growing season, but at different times, due to the summer 

flooding and consequent difficulty in accessing and cutting the relevant plots. In 2013, 

the final year of the experiment, only the factorial plots were cut in order to obtain 

difference in biomass values between treatment N and P treatment plots (discussed in 

chapter 4).
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Cut date 2010 Cut date 2011 Cut date 
2012

Cl 26-Apr-10 27-Apr-11 18-May-12
C2 10-May-10 13-May-11 19-May-12
C3 24-May-10 28-May-11 25-May-12
C4 07-Jun-10 08-Jun-ll 07-Jun-12
C5 14-Jun-10 16-Jun-ll 21-Jun-12
C6 21-Jun-10 22-Jun-ll 26-Jun-12
C7 28-Jun-10 ' 28-Jun-ll 05-Jul-12
C8 12-Jul-10 14-Jul-ll 19-Jul-12
C9 26-Jul-10 26-Jul-ll 02-Aug-12
Cut twice 14-Jun-10 and 02-Aug-10 16-Jun-l 1 and 02-Aug-11 Not cut

Table 3.1 Cutting date for each of the nine plots in 2010, 2011 and 2012

The plot design was the same as that described in Chapter 2, with five replicated treatment 

blocks, therefore each cutting treatment was repeated five times. Five controls and five 

treatments receiving P within each cut. The cut dates were deliberately timed to 

incorporate a hay cut for each week in June, and then two weeks interval either side of 

June to give rise to early, mid and late cutting dates in terms of when the hay cut is usually 

timed for wet grasslands. Growing day degrees were used to calculate when the first 

treatment cut should take place, the last treatment cut was planned for later in the season, 

however this had to be brought forward due to animals being brought onto the site to 

graze. One set of plots were cut twice in 2010 and 2011 (see table 3.1) in order to 

investigate the effects of a double cut on the vegetation community.

3.2.2 Vegetation survey

All treatment plots were surveyed between 21st and 29th June 2013. The percentage cover 

for each plant species present, as well as bare ground and litter were visually estimated. 

For each cut (C1-C9) there were five controls which received no P treatment, and five P
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treatment plots. No cutting regime was implemented in 2013 to allow the species survey 

to take place. Data for species richness, diversity indices and functional group percentage 

in this chapter are all taken from the vegetation survey data of 2013. The factorial 

treatment plots will be investigated in chapters 4 and 5.

3.2.3 Statistical analysis

Changes in the floristic composition between each treatment plot were described using 

species richness and abundance for each treatment plot. Multivariate analysis was 

performed using Canoco 4.5 (Braak & Smilauer 2002) including all the species and 

without down-weighting. Detrended Correspondence Analysis (DCA) was used to 

provide a summary of the variation and plant community dynamics, and Redundancy 

Analysis (RDA) was used to test treatment effects on plant community composition. 

Community diversity was assessed using species richness and the Shannon-Wiener 

diversity and evenness indices. Significance between treatment groups and cut was 

assessed using General Linear Models (GLM), incorporating analysis of variance with 

Tukey post-hoc tests to detect any significant differences between treatment groups, with 

significance set at p  < 0.05. Differences in percentage cover values between species was 

assessed using General Linear Model multivariate analysis in SPSS 21. Water-table depth 

was used as a co-variable in the analysis, and block as a random factor as there was a 

‘block effect’ for all variables, although no interaction effects between variables.
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3.3 Results

3.3.1 Species richness and diversity indices

The results for species richness and Shannon-Wiener diversity were calculated using data 

from the 2013 final year vegetation survey (table 3.2, figures 3.1 and 3.2). There was no 

significant difference in species richness and Shannon-Wiener diversity (SW) between 

cutting dates and the plots that were cut twice (p=0.592 and p = 0 3 1 1). There was also no 

difference in species richness and SW between plots receiving P (P+) and the controls 

(P0). The mean species richness per quadrat overall was 16.17 species. The mean for P0 

plots was 16.14 and the mean for P+ plots was 16.20. The plots that were cut twice had 

the lowest mean species richness of 14.40 per m2, although this was not significantly 

different from the mean.

Factor D f F value p value

Species
Richness 9 0.828 0.592

SW
diversity 9 1.194 0.311

Graminoid
% 9 1.59 0.133

Forb % 9 1.464 0.176

Legume % 9 0.87 0.556

Table 3.2 ANOVA table of significance of species richness, SW diversity, and functional group 
percentage
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Figure 3.2 Mean and standard error Shannon-Wiener diversity indices in P0 and P+ plots at each 
cutting date

3.3.2 Functional group percentage

Vegetation percentage cover in each plot was used to calculate functional group 

percentage for 2013 data (figure 3.3). Mean functional group percentage including all 100 

plots was 81.5% graminoids, 15.7% forbs and 1.8% legumes. There was no significant 

difference between functional group percentage between control plots and P+ plots (table
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3.2) or between different cutting dates, or plots that were cut twice (figures 3.4, 3.5, 3.6, 

3.7 and 3.8).
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3.3.3 Species cover abundance

In total 38 species were found at the site with the most frequent graminoids occurring in 

the plots being Agrostis stolonifera, Agrostis canina, Carex disticha, Alopecurus 

pratensis and Carex riparia. The most abundant forbs were Sanguisorba officinalis, 

Ranunculus repens, Ranunculus acris, Filipendula ulmaria, and Centaurea nigra. Figure 

3.9 describes the individual mean abundance for each species. Figure 3.10 describes the
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mean species abundance for each cutting date for the most abundant species. There was 

no significant difference between mean species abundance for cut or treatment group for 

any species, however if the cut dates were consolidated into early, mid, late and cut twice 

groups there was a significant difference overall for mean species abundance between cut 

group (p=0.023) figure 3.11). Water-table depth was also significant (pcO.OOl) and 

therefore used as a covariate in the analysis. The species which showed significant 

difference in mean abundance percentage cover between cutting treatments (early, mid, 

late and cut twice) were Agrostis stolonifera, Anthoxanthum odoratum, Festuca pratensis, 

Phleum pratense, Centaurea nigra, Oenanthe fistulosa and Trifolium repens (p<0.05). 

The top twelve most abundant species at the site were Agrostis stolonifera, Agrostis 

canina, Carex disticha, Alopecuris pratensis, Carex riparia, Holcus lanatus, Cynosurus 

cristatus, Sanguisorba officinalis, Poa trivialis, Festuca rubra, Ranunculus repens and 

Ranunculus acris.
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Figure 3.9 Mean and standard error species cover abundance per quadrat
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Figure 3.10 Mean species cover abundance for each cut date C1-C9

Agrostis stolonifera was most abundant in mid-cut plots, which was significantly different 

to early (p=0.042) and late (/?=0.003) cuts. Poa trivialis was also most abundant in the 

mid-cuts, although this was not significantly different. Species most abundant in the plots 

cut later were Phleum pratense, Anthoxanthum odoratum, Centaurea nigra and Oenanthe 

fistulosa. Species reduced significantly by cutting twice were Trifolium repens (p=0.019), 

Festuca pratensis (j?=0.026), and Centaurea nigra (p=0.035), however the species 

increased significantly by an extra cut was Phleum pratense (/?=0.016). (figure 3.11). 

Figure 3.12 describes the mean abundance of Trifolium repens individually, due to loss 

of clarity on figure 3.11 because of the larger scale.
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3.3.4 Ordinations

An initial detrended correspondence analysis (DCA) of the total vegetation data for 2013 

resulted in the longest gradient in the data being 1.975, indicating that that a linear 

ordination technique would be most appropriate for investigating the community 

composition. Principle components analysis (PCA) was then used as the ordination 

method for displaying species data alone (figure 3.13) and redundancy analysis for 

species and environmental variables (figure 3.14 and 3.15). The PCA of the species 

composition data showed that axis 1 accounted for 23.7% of the total inertia, and axis 2 

accounted for 14.3% of the total inertia. Species positively correlated with the first PCA 

axis were Sanguisorba offinalis, Filipendula ulmaria, Centaurea nigra, Cynosurus 

cristatus and Bromus hordeaceous and negatively correlated with the first axis were 

Oenanthae fistulosa, Carex acuta and Carex riparia. Axis 1 also had a significant 

correlation with species Ellenberg F values for moisture (p<0.05). As such, axis 1 of the 

PCA seemed to delineate a moisture gradient. The same PCA diagram was reproduced to 

code different treatment plots (P0 and P+) and cutting plots (C1-C9) which revealed 

scattered points and no obvious pattern. Axis 2 of the PCA was correlated positively with 

species Ranunculus repens, Phleum pratense, Festuca arundinacea and Elytrigia repens, 

and negatively with Festuca pratensis.
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Environmental variables and species were plotted using an RDA. 21.5% of species 

variation can be explained by the environmental variables. The statistical significance of 

the effects of the environmental variables was tested using Monte Carlo permutation tests, 

where water-table depth and cut 6 were significant (p<0.05) (table 3.3). The addition of 

P and cutting twice were not significant in explaining the species variation. Water-table 

depth correlated positively with Centaurea nigra, Filipendula ulmaria and Holcus 

lanatus, but negatively with Carex acutiformis, Carex acuta, Poa trivialis and Juncus 

conglomeratus. Water-table depth increase is associated with drier species (in the 

direction of the arrow variable), and decrease with wetter species. An additional RDA  

was plotted where cutting dates were grouped into early (C1-C4), mid (C5-C7) and late 

(C8 and C9) cuts to identify any broader trends among the species variation (figure 3.15). 

Phleum pratense was positively correlated with later cuts, Agrostis canina, Oenanthe 

fistulosa  and Ophioglossum vulgare were positively correlated with plots that were cut 

twice, and Carex riparia, Carex acuta, Alopecurus pratensis and Elytrigia repens were 

all negatively correlated with water-table depth (and therefore positively correlated with 

water table height ergo the wetter plots). Monte Carlo permutation tests revealed water- 

table depth and mid cut to be significant in explaining the species variation (table 3.4). 

Species positively correlated with mid cutting were the majority of the species, which 

reflects conventional management regimes on this habitat; but particularly Agrostis 

stolonifera, Festuca pratensis, Trifolium repens and Cardamine pratensis.
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Figure 3.14 RDA of 2013 vegetation species and environmental data

Variable LambdaA P-value F
WTD 0.05 0.002 4.74
Cut 6 0.02 0.012 2.57
Cut 8 0.02 0.086 1.61
Cut 4 0.01 0.114 1.5
Cut 7 0.01 0.224 1.33
P dose 0.01 0.384 1.06
Cut Twice 0.01 0.43 0.97
Cut 9 0.01 0.222 1.24
Cut 1 0.01 0.698 0.71
Cut 3 0.01 0.748 0.68
Cut 2 0 0.962 0.41

Table 3.3 RDA Monte Carlo permutation test summary
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Variable LambdaA P-value F
WTD 0.05 0.002 4.74
Mid cut 0.02 0.004 2.77
Early cu 0.02 0.098 1.66
Late cut 0 0.746 0.69

Table 3.4 RDA Monte Carlo permutation test summary

3.4 Discussion

The addition of P and varying the cutting date within the growing season did not show 

any significant difference in relation to species richness, Shannon-Wiener diversity or 

functional group percentage from the results of the species survey conducted in the final 

year of the experiment (2013). There were trends and significant differences associated
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with individual species. The study site was subjected to multiple flood events for the 

duration of the experiment, typically floodplain meadows are inundated periodically 

during winter and spring (van Eck etal. 2004). Following the exceptional rainfall in 2012, 

water-level data from Leaches meadow (see appendix 1) indicates that the site was 

flooded four times between April and August of 2012, and inundated for long periods. 

Many studies agree that the hydrological regime of a meadow is the most important factor 

to influence its floristic composition (Gowing & Spoor 1998; Gowing et a l  1998; 

Grevilliot, Krebs & Muller 1998; Casanova & Brock 2000; van Eck et a l  2004) therefore 

the summer flooding frequency and periods of inundation during 2012 might be expected 

to have more of an effect on the plant community than the experimental cutting date. 

Furthermore Monte Carlo permutation tests and multivariate analysis of variance on the 

data show that water-table depth was significant in explaining the variation of the plant 

community. Ellenberg F scores for moisture also correlated with the first axis of the PCA.

The RDA of the species data and cutting dates as environmental variables showed 

that only cut 6 (plots cut on 21st/22nd June) was significant in explaining any variation in 

species composition, reflected in the second RDA which showed that many of the species 

were positively correlated with the mid cutting dates (from 14th-28th June). Furthermore 

when the cuts were grouped into early, mid and late, only ‘mid cuts’ were significant in 

explaining the variation in species composition (p=0.002). In this case, it is probably not 

a co-incidence that this reflects conventional management cutting regimes for this type 

of habitat, although many sites are cut later than June to favour and encourage nesting of  

birds (Nocera et a l  2005), which could be detrimental to vegetation species composition.

Only one species was significantly positively affected by cutting earlier, which 

was Festuca rubra. Increase of Festuca rubra with cutting compared to abandoned 

meadows has been reported in the literature; especially in temperate grasslands in
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mountainous areas (Huhta et al. 2001; Krahulec et al. 2001; Hellstrom et al. 2006). But 

in terms of timing of hay cut Kirkham & Tallowin (1995) reported that Festuca rubra 

was not particularly susceptible to variations in cutting date. The colonization of Festuca 

rubra is often slower than other grasses (Grime, Hodgson & Hunt 1988), and may have 

thrived in plots cut earlier in this experiment due to the reduction in canopy height and 

removal of other more competitive species which then gained advantage in the later cut 

plots.

Species that thrived in the plots cut later were Phleum pratense, Anthoxanthum 

odoratum, Centaurea nigra and Oenanthe fistulosa. Phleum pratense was also the only 

species to increase significantly by cutting twice. Other studies have found cutting twice 

increased dominance of finer species and increased species richness overall (Wells 1980; 

Parr & Way 1988; Hejcman, Schellberg & Pavlu 2010), although Bissels et al. (2006) 

found that cutting twice also increased the cover of only one species (Serratula tinctoria), 

attributed to lowering the amount o f above-ground biomass and thus reducing the 

competitive effects of established species and a higher incidence of light for seedling 

establishment. In agreement with this study Parr and Way (1988) also found that Phleum 

pratense increased with cutting twice on one of two study sites on road verges in the UK.

Some species may increase in plots cut later in response to other species 

decreasing. This could be the case with Anthoxanthum odoratum  which increased 

significantly in the late cuts. This is also in agreement with Pavlu, Schellberg & Hejcman 

(2011) and Hansson & Fogelfors (2000) who reported an increase in Anthoxanthum 

odoratum with cutting due to its high sensitivity to shading in tall grasslands. It is also an 

efficient colonizer and spreads rapidly, so may have taken advantage by colonizing gaps 

made available by other species reduced by late cutting, as its growth rate can increase 

later in the season (Lambrechtsen 1968). Dominant grasses which decreased in later cut
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plots were Agrostis stolonifera and Poa trivialis, which could explain the significant 

increase in Anthoxanthum in those plots. Taller growing forbs would also favour a later 

cut due to their competitive advantage over smaller rosette forming species (Wahlman & 

Milberg 2002; Jantunen 2003; Hellstrom et al. 2006), which is demonstrated by the 

increased cover of Oenanthe fistulosa, and Centaurea nigra in the later cut plots.

Cutting twice significantly decreased the cover of Centaurea nigra and Trifolium 

repens, which disappeared altogether in these plots. This is contrary to the findings of 

other studies which found Trifolium repens to increase in cut plots and plots cut twice or 

more than twice (Parr & Way 1988; Pavlu, Schellberg & Hejcman 2011) due to its 

intolerance of shade (Grime, Hodgson & Hunt 1988). However Stampfli (1992) found 

that Trifolium repens can behave differently depending on the ecological conditions of 

the sward. In the case of this experiment, Trifolium repens may have been outcompeted 

by other taller growing species which responded positively to a second cut, such as 

Alopecurus pratensis, Carex riparia and Phleum pratense. Pavlu, Schellberg & Hejcman 

(2011) found an increase in Trifolium repens only after five years of cutting, which goes 

beyond the time constraints of this investigation. Similarly, other studies investigating 

cutting have been longer-term (Bakker, Elzinga & de Vries 2002; Hejcman, Schellberg 

& Pavlu 2010) allowing time for effects of cutting to impact the species composition.

3.4.1 Conservation implications

Altering the timing of the hay cut caused no significant increase or decrease in species 

diversity in this short term experiment, although there was an effect on species 

composition when the cutting date was changed. This has implications for management 

of floodplain meadows as later mowing favoured some taller herbs such as Centaurea 

nigra and Oenanthe fistulosa, which could be due to the individual plants setting seed in
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July and therefore increasing in abundance in the later cut plots as both plants have very 

little vegetative spread (Grime, Hodgson & Hunt 1988). However, early cutting can 

favour smaller growing species rather than species with taller-growing and leafier stems. 

This is because the former grow closer to the ground and mowing removes a smaller 

proportion of their above-ground biomass (Hellstrom et al. 2006). There was no trend in 

this direction observed at Leaches, with the exception of the slow-growing grass Festuca 

rubra favouring earlier cutting dates due to the reduction of other species responding 

positively to later cutting. According to this study, in terms of maximum nutrient removal 

(discussed in chapter 2), it is better to cut no later than the end of June for unimproved 

meadow grasslands, and mid-July for improved sites as peak nutrient removal occurred 

at these times in fertilized and unfertilized plots. Cutting later than this could therefore 

lead to increased fertility of the soil, as the nutrient value of the hay crop reduces later on 

in the season (Kirkham & Tallowin 1995). Nutrient build up in the soil could potentially 

lead to a reduction in species richness over time (Kirkham, Mountford & Wilkins 1996; 

Silvertown et al. 2006; Dupre et a l  2010). Thus cutting date on floodplain meadows 

should not necessarily be a fixed date, but needs flexibility depending on the overall 

nutrient status of the site, the dominant vegetation species which may (or may not) be 

desirable, the control of aggressive species which favour multiple cutting dates (Newman

2013), and the individual species composition of floodplain meadow sites which may 

favour either an earlier or later cut depending on the phenology of specific desirable 

species.
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3.5 Conclusion

The addition of 25 kg P ha yr'1 to treatment plots, was not significant in altering the 

species composition or species richness o f the vegetation. Cutting dates were not 

significant in changing the species richness of the vegetation between plots, but showed 

significance in partly explaining the species composition in the redundancy analysis and 

multivariate analysis o f variance. The plots cut in ‘mid’ growing seasons and more 

specifically cut 6, were significant in explaining some of the species composition 

variation, but no other cuts were significant. However the cutting regimes were only 

implemented in 2010, 2011 and partly in 2012 which may not have been long enough to 

induce an effect on the vegetation at this site. More relevant is perhaps the fluctuating 

dynamics of the water table from 2010 to 2013 which would have driven a change in 

species composition at the site, regardless of cutting date (van Eck et a l  2004; Jung, 

Hoffmann & Muller 2009). However, changes to the site over time are discussed in 

chapter 5. The gaps between cutting dates may have been too small to elicit an effect, 

making it impossible to separate the effects of cutting between 14th June and 21st June for 

example, both in terms of species richness and composition. Grouping the cuts into early, 

mid and late produced a significant result in terms of individual species dynamics, with 

mid cutting significantly explaining the variation in species data on the RDA, reflecting 

current floodplain meadow management regime and reinforcing timing the cutting for 

late June rather than July for this type of vegetation community (see chapter 2). It is not 

possible to say that cutting later in the season favoured tall growing species in general, as 

dominant taller species such as Alopecurus pratensis, Sanguisorba officinalis, Carex 

riparia, Poa trivialis, Ranunculus repens and Ranunculus acris were not increased 

significantly by later cuts. Nor did cutting twice within the season significantly reduce 

the dominance of coarser species such as Carex sp or taller growing herbs such as
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Sanguisorba officinalis, which was reduced by an additional later cut, but not 

significantly. Perhaps an extension in the duration of the cutting experiment would have 

induced a more pronounced species response, which would give further indications for 

nature conservation and floodplain meadow MG4 management.
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4.1 Introduction

Deficiency of resources limits the productivity of plants, which encourages competition 

between species and consequently shapes the composition and interactions between and 

within plant communities (Famor et al. 2013). Limitation o f plant growth by a nutrient 

is caused by a low availability of that nutrient to the plant roots, to the extent that the 

growth demands of the plants cannot be fulfilled (Verhoeven, Koerselman & Meuleman 

1996). The majority o f models o f plant resource limitation are based on Liebig’s 

conceptual model o f  the law o f the minimum (Liebig’s Minimum Hypothesis, LMH) 

where a plant will always be limited by a single resource because resources are not 

supplied to plants in equal proportions (Liebig & Gregory 1842). This idea was originally 

developed to understand agricultural systems, but has been used by ecologists to explain 

nutrient limitation across aquatic and terrestrial ecosystems (Elser et al. 2007) to which it 

is not necessarily relevant, due to the diverse communities existing within these 

ecosystems which will adjust their stoichiometry to that of their resources (Danger et al. 

2008). Several ecologists have adapted Liebig’s law o f the minimum to a Multiple 

Limitation Hypothesis (MLH) whereby plants adjust uptake of multiple resources to 

maintain limitation by all essential resources (Tilman 1982; Chapin et al. 1987) because 

by definition if  plants are only limited by one resource at a given time, then plants are 

overinvesting in all other essential resources (Farrior et a l  2013).

4.1.1 N:P ratios

Plant growth in wet grasslands is controlled by the availability of nutrients, in particular 

nitrogen (N), phosphorus (P) and potassium (K) (Vitousek & Howarth 1991; Verhoeven, 

Koerselman & Meuleman 1996; Giisewell & Koerselman 2002). Usually biomass 

production is enhanced by the addition of a specific limiting nutrient whilst the addition
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of non-limiting nutrients have little or no effect on community biomass. Grime (1979)

described the relationship between species richness and productivity as a hump-backed

curve, demonstrating that maximum species richness and variation in species occurs at

intermediate productivity levels. Species composition of the vegetation in wet grasslands

can be affected by the addition o f both limiting and non-limiting nutrients due to different

species responses to the varying nutrients (Giisewell, Koerselman & Verhoeven 2003),

suggesting that species differ in their nutrient requirements and may respond differently

to enhanced or reduced nutrient supply (Gamier 1991).

Determining nutrient limitation on grasslands can be done by means of nutrient 

addition experiments. Koerselman & Meuleman (1996) attempted to develop a ‘tool’ in 

order to provide an alternative to this, which would provide the same information 

(establishing the limiting nutrient) but would be more efficient, cost effective, and cause 

less site disturbance. They hypothesized that the N:P ratio of the vegetation can 

demonstrate if  the vegetation is N or P limited based on a review of 40 field fertilization 

experiments in wetlands, and suggested that the biomass production of the vegetation is 

limited by N if  the N:P ratio of the above-ground biomass is low (<14) and by P if  the 

N:P ratio is high (>16). Thus populations with high N:P ratios would be enhanced by P 

fertilizer, and populations with low N:P ratios would be enhanced by N  fertilizer. 

However, contrary to these findings, Giisewell, Koerselman & Verhoeven (2003) found 

that N:P ratios of co-limited vegetation or plant populations were not confined to the 

narrow range of 14 to 16 and concluded that N:P ratios were a useful tool, although not 

exclusively suitable for predicting how changes in nutrient supply will affect plant species 

composition.

92



CHAPTER 4. THE EFFECT OF P AND N ADDITION ON ABOVE-GROUND
PRODUCTION, NITROGEN MINERALIZATION, NUTRIENT CONTENT AND
OFFTAKE: A FACTORIAL EXPERIMENT________________________________

Availability of N and P can also be controlled by vegetation management; for 

example Koerselman, Bakker & Blom (1990) demonstrated that above-ground biomass 

harvesting in the Netherlands creates a strong net loss of P and a relatively small loss of 

N from the system. Therefore wet grasslands that have historically been managed by 

mowing would expected to be P limited, whereas fens which are mown infrequently 

would be N limited (Verhoeven, Koerselman & Meuleman 1996). Limited data is 

available from UK MG4 grassland, however samples obtained from the Derwent Ings 

suggest that the N:P ratio would indicate N limitation rather than P (Gowing et a l  2002). 

Although, in this grassland type there is evidence to suggest that community composition 

is linked to P availability where the most species-rich communities occurred on soils with 

the lowest available P following analysis of samples from eleven lowland grassland sites 

in England (Gilbert, Gowing & Wallace 2009). This has also been demonstrated in other 

studies; Wassen et a l  (2005) examined N:P ratios in wetland vegetation across a wide 

geographical scale, rather than through nutrient addition experiments, and concluded that 

endangered plant species are more likely to exist under P limited rather than N limited 

conditions, thus species loss is likely to be due to enhanced P. More recently, Ceulemans 

et a l  (2013) investigated the role of phosphorus versus nitrogen enrichment across North­

west European grasslands and suggested that P enrichment was a more important driver 

of species loss from semi-natural grasslands than N enrichment. They found that 

irrespective of soil N levels, beyond 20 mg P kg'1, species richness did not exceed 20 

species per quadrat as observed in 132 grasslands surveyed across North-west Europe.
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4.1.2 Microbial limitation

Nitrogen mineralization is the process that controls N availability to plants by the 

transformation of organic N to inorganic ammonium and then to nitrate by nitrification 

(Abbasi, Shah & Adams 2001). The N pool derived from mineralization is usually small 

compared to the total N pool within the soil but it forms the major source of N supply for 

plant uptake, thus plant N supply is strongly correlated with rates of N mineralization 

(Nadelhoffer, Aber & Melillo 1984). Understanding the dynamics of N mineralization 

and nitrification is important in the management of the nitrogen cycle within grasslands 

and may provide further insight into biomass production, species composition and species 

richness.

Release of N and P, and their availability to plants is affected by the microbial 

processes occurring in the soil (Harmsen & Van Schreven 1955; Abbasi, Shah & Adams 

2001). Some researchers have suggested that net N mineralization increases with 

increasing P availability in grasslands (van Oorschot, Hayes & van Strien 1998; Changhui 

et al. 2014). Janssens et al. (1998) also hypothesised that available soil P could be a 

limiting factor o f nitrate (NO3) supply by mineralization of the soil organic matter, hence 

nitrogen would be the main element limiting plant diversity, but its availability controlled 

by P availability. If P influences the rate of N mineralization, this could change how much 

N is taken up by the vegetation and stored, which could be investigated by adding P to 

experimental plots and harvesting the above ground vegetation biomass at regular 

intervals and analysing the harvested biomass for N. Oorschot et a l  (1997) aimed to 

analyse the reaction of a riverine ecosystem to nutrient enrichment and the effects of the 

N and P processes in the vegetation and soil by comparing a site which had received 

nutrient additions to one which had not. They found that N mineralization showed a strong
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negative correlation with the C:P ratio of soil organic matter, which suggests an 

interaction between P and N cycling for soil organic matter break-down at a low nutrient 

availability. A study by Ruess & Seagle (1994) on the Serengeti National Park in 

Tanzania, compared the different soil characteristics and microbial processes of 17 study 

sites within the area. They found that ammonium production was restricted with low P 

availability and that nitrogen mineralization was unrelated to microbial biomass while 

above-ground production was limited by nitrogen. Similarly, a study on 17 Dutch 

heathlands, (and then subdivided into 41 sites), found that N mineralization was positively 

correlated with the labile soil organic P-pool (Troelstra, Wagenaar & Boer 1990). In the 

UK, fertilizer experiments on the Somerset Levels at Tadham Moor (Kirkham & Wilkins 

1994) indicated that the uptake and availability of N was increased by the application of 

inorganic K and P fertilizer and by the addition of inorganic P alone. In Western and 

central Europe a study by Janssens et al. (1998) on grasslands, found a hump-backed 

relationship between the soil available P and the percentage of legume cover per unit area. 

If the available P in the soil was greater than 5mg/100g, then legume cover declined. They 

suggest that this could be due to productive grasses being present, thus reducing the 

number of legumes through competition. Alternatively, they suggested that higher 

available N content could also influence the legume cover by the soil available P limiting 

the organic matter mineralization and influencing the soil available N quantities. They 

suggested that soil extractable P can indirectly influence grassland biodiversity by its 

control on the soil available N quantities by enhancing N mineralization. Similarly 

Cadisch, Schunke & Giller (1994) found a decrease in mineralization in plants 

experiencing a P deficiency, and therefore a lower release of available N.
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These studies allude to a theory that increased soil P may stimulate microbial 

activity to increase N mineralization, and increasing the N made available to plants. Thus 

plants may increase uptake of N in response to P addition. This theory suggests that P is 

important for plant productivity even in N limited systems and suggests an indirect effect 

on N availability (figure 4.1). Supporting this idea, a very recent study (Changhui et al.

2014) investigated the effects of N and P additions on microbial N transformations and 

biomass on a saline-alkaline grassland in Northern China. They found that during the 

growing season, P addition significantly stimulated the soil inorganic N pool, and 

furthermore increased the soil net N mineralization rate, although did not increase peak 

above-ground biomass. They also found that P fertilization significantly decreased the 

ratio of microbial biomass carbon, to microbial biomass nitrogen (MBC/MBN) indicating 

a shift in the microbial community structure.

N in organic matter

Mineralization Microbial activity

S o i l PSoi l  N

P in organic matter

Plant  P 
a nd  N

Av ai la b l e  soi l  N 
( N H / a n d  N 0 3*)

Figure 4.1 Schematic diagram of theoretical soil P effect on N mineralization. Bold dashed red 
arrows indicate potential pathway of increased P
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4.1.3 Co-limitation

Numerous studies and long-term fertilization experiments have in fact demonstrated that 

the vegetation becomes dominated by different plant species under N-limited or P-limited 

conditions (Tilman 1982; Giisewell 2004; Hejcman et al. 2007) depending on the ability 

of the species to compete for N or P, which in turn is dependent upon the species traits 

and response to nutrient acquisition, nutrient retention and nutrient utilisation efficiency 

(Tilman 1988; Berendse et al. 1992). A recent study (Fay et a l  submitted) investigated 

nutrient limitation of above-ground net primary productivity (ANPP) on 42 grasslands 

across five continents; they found that N and P synergistically co-limited global 

grasslands 1.4 times more than N or P independently.

More recently the paradigm of single resource limitation has changed towards 

concepts of co-limitation by multiple resources (Harpole et al. 2011). They reviewed 641 

studies that applied N and P in a factorial design within freshwater, marine and terrestrial 

ecosystems and found that more than half of these displayed some type of synergistic 

response to N and P addition. Moreover 28% of the 641 studies showed strict definitions 

of co-limitation where the vegetation biomass for example, responded to only combined 

additions of N and P, rather than singularly to N or P independently. They suggest that 

there is a need for further studies that address the multiple mechanisms that could lead to 

different types of co-limitation.

Despite the extensive literature on N and P limitation in grasslands, from older 

studies which discuss resource limitation of either N or P, and using N:P ratios to describe 

nutrient limitation (Vitousek & Howarth 1991; Verhoeven, Koerselman & Meuleman 

1996; Giisewell, Koerselman & Verhoeven 2003; Giisewell 2004), to more recent 

publications on multiple resource limitation (Harpole et al. 2011; Farrior et al. 2013),
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nutrient addition experiments are still relevant in establishing the effects o f N and P. Not 

only on the productivity of the above-ground vegetation of MG4 communities, o f which 

evidence is lacking for this specific community, but also on below-ground processes and 

limitation of the microbial community by either N and/or P. Farrior et a l  (2013) suggests 

that multiple resources may be tied together, which would explain the difficulty in 

determining a general theory for plant limitation and the ongoing debate as to which 

nutrient N or P is most limiting (Wassen & Olde Venterink 2006; Ceulemans et a l  2013; 

Rowe, Smart & Emmett 2014).

Moreover there appears to be conflicting evidence in that according to the view  

of Verhoeven, Koerselman & Meuleman (1996), limitation of MG4 grassland would 

appear to be N limited and therefore P addition should have little effect on productivity 

and species richness. However, this is known to be incorrect as other studies have clear 

evidence for P limiting species richness (Wassen et a l  2005; Gilbert, Gowing & Wallace 

2009; Ceulemans et a l  2013). This thesis examines the effect of P addition on the uptake 

of N by the vegetation, which would primarily question whether the microbial community 

is limited by P, and if P can operate by releasing N  (Janssens et a l  1998), but also to 

identify which nutrient is most responsible for limitation of plant productivity on MG4 

floodplain communities. This would support emerging theories of co-limitation by N  and 

P on grasslands, and address the hypothesis that increased soil P availability can increase 

N mineralization. If this is the case then more N would become available for plant uptake; 

directly and indirectly increasing productivity of the vegetation. In turn this will 

contribute towards the understanding of P and N cycling, and help to explain the 

contradictory evidence on co-limitation. This chapter attempts to address the following 

questions:
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1. Is the vegetation productivity limited by N or P? (Page 105)

2. Does the addition of P stimulate the vegetation to take up more N in the field? 

(Page 107)

3. Does the addition of P increase nitrogen mineralization in the soil of floodplain 

meadows? (Page 115)

4.2 Methods

4.2.1 Experimental design

The factorial component of this experiment consists of 8 treatments applied to randomly 

located plots within each of the five repetition blocks (figure 4.2 represents these plots, 

grouped together for purposes o f explanation). Treatments were added to the plots in three 

doses between March and May in 2010 and 2011. Nitrogen was added to two o f the plots 

as ammonium nitrate (NH4NO3) at a rate of 50 kg N ha'1 y"1 (referred to as N+). 

Phosphorus (P) was added as sodium dihydrogen phosphate (NaHiPCL) at rates o f 25 kg 

P ha'1 y'1 to two of the plots (referred to as P+), and 75 kg P ha'1 y'1 to two of the plots 

(referred to as P2) and at 25 kg P ha'1 y'1 to one of the N+ plots (referred to as N+P+). 

The control plots (referred to as P0) received deionised water. The N+, one of the P0 and 

one of the P+ plots were cut in the third week of June each year (between 19th and 25th 

June), and the P2 plots, the other P0 plot and the other P+ plot were cut in the last week 

of June/first week in July each year (between 26th and 3rd July). Half of the P2 plots also 

received a second cut at the end of August each year in order to monitor the mitigation 

effects of a double cut. Nitrogen and phosphorus application rates attempted to represent 

the range of fertilizer additions typically added to improved grasslands. Treatment
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application was to the central metre square within each 2  by 2  metre plot, to allow for a 

buffer zone between treatments. Control treatments in this section are labelled C6P0 and 

C7P0 which refer to the date the plots were cut. So C6P0 are the control group for the 

N+PO and N+P+ treatment groups, and C7P0 are the control group for the P2C1 and P2C2 

treatments. This is because the N plots and P2 plots were cut in different weeks, so two 

control groups were needed (table 4.1).

t
2 m

I

Figure 4.2 Factorial plot and block design

4.2.2 Vegetation sampling

The factorial treatments were surveyed for plant species composition in 2010, 2011 and 

2013 in the same week as they were mown (table 4.1). Details of vegetation sampling can 

be found in chapter 2 , and the results of the factorial vegetation composition are reported 

in chapter 5.

Cut Date (2010, 2011,
Plot Code______________2013)____________________________ Treatment

C6 P+ 21st June 25 kg P ha yr'1
C6 PO 21st June Control
C7 P+ 28th June 25 kg P ha y r 1
C7 PO 28th June Control
N+P+ 21st June 25 kg P ha y r 1 + 50 kg N ha yr
N+P0 21st June 50 kg N ha y r 1
P2C1 28th June 75 kg P ha y r 1

P2 C2 28th June/16th August 75 kg P ha y r 1

N+P0

N+P+
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Table 4.1 Plot code, treatment additions and cutting date of factorial plots

4.2.3 Soil sampling and analysis

Prior to commencing the field experiment in 2010, soil samples were collected from 

prospective locations within the field site and tested for Olsen extractable P (soil available 

P) and pH. Multiple soil cores from the upper 10 cm were collected from various locations 

within prospective sites for the treatment blocks (figure 4.3). Following analysis, the 

available P at the site for prospective blocks was less than 15 mg/kg P04-P, thus suitable 

for a P addition experiment (table 4.2). Soil samples from the factorial plots were 

collected in 2011 and 2013, soil was oven dried at 40°C overnight, then ground to 4 mm. 

Extractable P was determined using an Olsen extract followed by colorometric analysis 

(MAFF 1986).

LM5

r
%  LM7

LM6

62m LM8

Figure 4.3 Initial soil sampling locations at Leaches meadow
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Location Name mg/kg P04-P pH
LM5 7.6 5.59
LM6 5.9 5.34
LM7 4.6 5.47
LM8 18.8 5.92

Table 4.2 Olsen P and pH results from soil sampling locations prior to starting the field experiment

4.2.4 PRS Probes

Measuring nutrient supply to plant roots can provide an in-situ measure of N  flux over 

time in the soil (Sharifi et a l  2009). Nitrate and ammonium ion (NO3' and NH4+) supply 

to plants can be measured using Plant Root Simulator Probes (PRS™-probes) which 

consist of an ion exchange membrane encapsulated in a plastic casing. These membranes 

are chemically pre-treated to exhibit surface characteristics and nutrient sorption 

phenomena that resemble a plant root surface (Western Ag Innovations 2008). They can 

be inserted into the soil and left for a predetermined burial time to measure total nutrient 

supply to plant roots. The amount of nutrient ions absorbed onto the PRS™-probes at the 

end of the burial period, represents the nutrient supply rate to a plant root for the duration 

of the burial. The supply rate is expressed in units of micrograms of nutrient absorbed per 

10 cm2 of membrane surface over the burial time (Western Ag Innovations 2008).

For this study, the probes were used to measure the absorption of nitrate and 

ammonium ions in selected plots over a period of 8 weeks in 2011 and 2012. The plots 

selected for the experiment were those within the factorial design: P0, P+, N+P0, N+P+, 

P2C1 and P2C2 plots, from each experimental block. In 2011 the burial period was from 

May until July, and in 2012 the burial period was brought forward from March to May, 

to try to capture the spring growing season.
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4.2.5 Laboratory incubation study to measure mineralization

The field P addition experiment was also simulated in the laboratory to investigate the 

effect of P on mineralization in the soil under laboratory conditions. For this study soil 

was collected from as near the experimental plots as possible at Leaches field study site 

from the top 20 cm of the soil profile. The soil was air dried for two weeks after which it 

was sieved and ground to 5 mm. The soil was then combined with equal weights of 

washed sand in order to improve drainage and avoid saturation and anoxia during the 

incubation phase of the experiment. Three soil cores of equal weight were made up from 

the soil-sand mix and placed on a water tension sand table in order to saturate for 24 

hours. Each core was then weighed again to establish saturation weight, after which they 

were placed on the sand table adjusted to field capacity (a tension of 5 kPa) to equilibrate. 

The weight of the cores at field capacity was measured to enable a calculation o f the exact 

volume of treatment solution required to add to each experimental core to obtain field 

capacity.

Twenty-five cores of equal weight were then made up and subjected to 4 different 

P treatments (PO, PI, P2, P3). PO reflected the control and consisted of deionised water, 

PI consisted of a solution of dihydrogen potassium phosphate, equivalent to adding 25 

kg ha'1 of P fertilizer in the field. P2 was reflective of 75 kg ha'1 of P fertilizer and P3 was 

equivalent to 100 kg ha"1. Each treatment was replicated 5 times, hence there were 5 cores 

for each treatment. The cores were covered with parafilm (Parafilm M® Pechiney Plastic 

Packaging, Chigago, IL) to ensure minimum evaporation and were incubated at 25 ° C 

for two weeks. Following incubation, the soil was removed from each core and mixed to 

ensure homogeneity. At this point 5 more cores were made up and treated with deionised 

water to represent treatment prior to incubation, these were labelled ‘P base’. 25 g o f soil
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from each core was then shaken for 1 hour with 50 ml of 0.5M KC1 extract. Extracts were 

then filtered through a Whatman No 1 filter paper (MAFF 1986). Each filtrate was then 

frozen at -80°C prior to analysis for nitrate and ammonium using an auto analyser (Braun 

Lubbe Auto Analyser 3). This experiment was conducted in 2011 and then repeated in 

2013.

4.2.6 Statistical analysis

Data were natural log transformed to achieve normality and homogeneity o f variance 

where appropriate. Above-ground biomass data and nutrient data were then analysed 

using repeated measures ANOVA to determine if  changes in between treatment plots 

were significant. Statistical differences were determined using General Linear Models in 

SPSS 21 using treatment, block and year as independent variables. Block effect and 

interaction effects were accounted for.
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4.3 Results

4.3.1 Plant biomass and nutrient offtake

Above-ground biomass did not increase significantly with any of the treatment additions 

in 2010 or 2011 (figure 4.4). However, for both these years, the treatment which gave rise 

to the greatest biomass was the combined N and P treatment (N+P+). In 2013 above­

ground biomass was significantly different between treatment groups (/?=0 .0 2 ) with post- 

hoc tests showing significance between C6P0 and N+PO (p=0.05). Biomass overall in 

2013 was significantly increased compared to that of 2010 and 2011, but 2010 and 2011 

were not significantly different. Results are presented in table 4.3.

6000 n

CO 5000 -
<30M
min 4000 -
P

r-. 3000 -
1

u.00 2000 -
O

£ 1000 -

o
£ 0 -

■ 201
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P2C2

Figure 4.4 Mean and standard error for above-ground biomass for each treatment group in each 
year. * indicate significant difference from control groups (p<0.05)
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4.3.2 Leaf tissue nitrogen content and offtake

Plant tissue N content (figure 4.5a) was significantly different between 2013 and the other 

years, but not between 2010 and 2011. Plant N tissue content was not significantly 

different between treatment groups in 2013 (p=0.28), but was significant between 

treatments in 2010 and 2011 (p<0.001). Although the overall model showed a significant 

effect of the treatment additions in 2010 and 2011, the only specific treatments showing 

a greater response than the controls was N+P0 and N+P+ in both years (p<0.001).

Nutrient offtake displayed similar treatment response to N tissue content (figure 

4.5b). Offtake N differed significantly only between 2010 and 2013 (p=0.015) and 2011 

and 2013 (p<0.001). 2010 and 2011 were not significantly different. Offtake N was 

significantly different between treatment groups within 2010 (p=0.004), and specifically 

between C6P0 and N+P+. P2C1 and N+P+ (p=0.015), and P2C2 and N+P+ (p=0.026). In 

2011 offtake N was also significantly different between treatment groups (p=0.007) and 

specifically between C6P0 and N+P+ (p=0.02) and C7P+ and N+P+ (p=0.033). N offtake 

was not significantly different between treatment groups in 2013.
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Figure 4.5 Mean and standard error for (a) nitrogen percentage in dry matter, (b) N offtake, for 
each treatment group. * indicate significant difference from control groups (/?<().05)
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4.3.3 Leaf tissue phosphorus content and offtake

P % in dry matter was significantly different between years (p<0.01). Post-hoc tests 

showed significant difference between 2010 and 2013, and 2011 and 2013. P% between 

2010 and 2011 did not differ significantly. Within all years, there was a significant 

difference of mean P% between treatments overall (p<0.01). In 2010 the treatments 

showing a significant difference from the controls were N+P+, P2C1 and P2C2. N+P0 

and N+P+ were also significantly different. This was the same for 2011 but the controls 

and P+ were also significantly different. In 2013, post-hoc tests showed significance only 

between controls and the P2 treatments (figure 4.6 a).

P offtake was also significantly different between years, and post-hoc tests 

showed significant difference between all years. There was also a significant difference 

between the mean P offtake between treatment group in every year, post-hoc differences 

for P-offtake in each year are as follows. In 2010 and 2011 between the controls and 

N+P+ treatment, and the controls and the P2 treatments. In 2013 between the controls and 

the N+P0 and N+P+ treatments, and the controls and the P2 treatments (figure 4.6 b).
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4.3.4 N:P ratios

Mean N:P ratios were significantly different across year overall (/?<0.001) and post-hoc 

between all years except 2010 and 2013 (figure 4.7). Differences between treatments were 

significant within all years and post-hoc between the controls and the P2 treatments in all 

years, and the controls and the N+PO and N+P+ treatments in 2010 and 2011. N:P ratios 

for controls in 2010 fell between 11.5 and 13.0, for 2011 they were between 12.7 and

14.6 and in 2013 they were between 10.2 and 10.9. There was no significant difference 

between the P2 plots which were cut once (P2C1) or cut twice (P2C2).
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Figure 4.7 Mean and standard error N:P ratios for each treatment group in each year
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Factor Variable df F P value
Treatment 2010 Offtake N 7 3.384 0.008

N % in dry matter 7 15.816 <0.001
Offtake P 7 6.729 <0.001
P % in dry matter 7 39.657 <0.001
NP ratio 7 55.39 <0.001
Above-ground
biomass 7 0.964 0.473

Treatment 2011 Offtake N 7 2.019 0.083
N % in dry matter 7 5.108 <0.001
Offtake P 7 9.484 <0.001
P % in dry matter 7 3.782 0.004
NP ratio 7 3.456 0.007
Above-ground
biomass 7 1.566 0.182

Treatment 2013 Offtake N 7 1.613 0.168
N % in dry matter 7 1.348 0.261
Offtake P 7 8.408 <0.001
P % in dry matter 7 7.005 <0.001
NP ratio 7 6.478 <0.001
Above-ground
biomass 7 3.134 0.012

Table 4.3 Anova table of significant differences between treatments in 2010, 2011 and 2013 for 
above-ground biomass, offtake N, N% in dry matter, offtake P, P% in dry matter and N:P ratio

4.3.5 Olsen extractable P and pH

Soil Olsen P between 2011 and 2013 did not differ significantly (figure 4.8). However in 

2011 there was a significant difference between treatment groups P0 and P2C2 (p=0.048), 

and N+P+ and P2C2 (p=0.019). In 2013 there was also a significant difference between 

treatment groups P0, P+, N+P0, N+P+ and P2C1 (p<0.05), and treatment groups P0, 

N+P0, N+P-i- and P2C2 (p<0.05). In summary; plots receiving 75 kg P ha yr'1 (P2 

treatment plots) had significantly more extractable P than the other treatment groups. 

There was no significant difference between the plots receiving 25 kg P ha yr'1 and the 

controls. Soil pH (figure 4.9) was measured in 2013, there was no significant difference 

between treatment group, and the overall mean was 5.4.
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4.3.6 PRS probe data

The ion exchange resin results are presented below (figure 4.10). In 2011 generally more 

NO3 ions were adsorbed onto the probe membranes than NH4+ ions. The data were 

significant between treatment groups for NO3-N overall but post-hoc only between N+PO 

and P2C2 (p=0.034). NH4 -N was not significant between treatment groups. The ion 

exchange resin results were not significant in 2 0 1 2  between any treatment group, 

although more NH4 -N was detected relative to NO3 -N in 2012 than in 2011.
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Figure 4.10 Mean and standard error PRS probe results for each treatment group
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4.3.7 Incubation experiment

The concentration in extraction with KC1 of ammonium ions in the first set of 

experiments, run in 2011 increased as the P treatment increased (figure 4.1 la). However 

for treatments P2 and P3, the strength of dihydrogen sodium phosphate required for the 

correct application rates was so high that the sodium peak overlapped the ammonium 

peak on the ICP, so clarity was lost. However, the ammonium results were significant 

overall (p<0.001) and between P base and PI (p<0.001), P0 and PI (p=0.012). The nitrate 

extractions were also significant overall (p<0.001), and specifically between P base, P0, 

PI, P2 and P3 (p<0.001), and P2 and P3 (p<0.001). For the P nutrient additions for the 

experiment in 2013, dihydrogen potassium phosphate was used to avoid the problem of 

overlap between the ammonium peak and the sodium peak on the IC autoanalyzer. The 

results in 2013 exhibit the same pattern as the experiment in 2011 (figure 4.11b); as the 

P application strength increased, so did the concentration of ammonium ions in the 

extraction. This was significant overall and between P base and P0, P base and PI, P base 

and P2 and P base and P3 (pcO.OOl). And also between P0 and P2, P0 and P3 (/?<0.001) 

(see figure 4.11 for post-hoc differences between P0 and P treatments). The nitrate results 

also showed significant differences overall, but this was mostly driven by the difference 

between the P base and treatment cores. No other treatments gave significant results. In 

both experiments, the concentration of ammonium ions was higher than nitrate ions in the 

extraction for the treatments than the P base samples post incubation, indicating that N  

mineralization had taken place.
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Figure 4.11 Mean and standard error of ammonium and nitrate ion concentration in extraction for 
each P treatment. * indicates significant difference from the control (P0) (/?<0.001)
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4.4 Discussion

4.4.1 Above-ground biomass results

The factorial nutrient addition experiment did not result in significantly increasing the 

above-ground biomass of any of the treatment groups within years 2010 and 2011 of the 

experiment, which was probably due to growth limitation by the lack of rainfall (see 

chapter 2). In 2013 this was not the case with biomass being significantly different 

between treatment groups over all arid post-hoc differences between the controls and the 

plots receiving nitrogen alone. This supports the conclusions o f chapter 2, in that the 

vegetation biomass on Leaches Meadow is N limited rather than P limited, and indeed 

the conclusion that nitrogen is the most frequent limiting nutrient in European herbaceous 

wetlands (Verhoeven, Koerselman & Meuleman 1996; Venterink, Vliet & Wassen 2001). 

Overall, 2010 and 2011 were not significantly different from each other in terms of 

vegetation productivity o f above-ground biomass, but 2013 was significantly increased 

compared with 2010 and 2011, again probably down to increased rainfall in this year.

4.4.2 N:P ratios

In terms of biomass N:P ratios, the mean between the treatment plots in this experiment, 

differed between years and also within years. Significant differences were observed 

between controls and P2 treatments in every year, with the controls exhibiting a mean 

N:P ratio between 10 and 14, and the P2 plots between 5 and 7. In 2010 and 2011 there 

was a significant difference in mean N:P ratios between control plots, (which were in the 

range of 10-14) and the plots that received N alone (which were between 13 and 18), and 

the control plots and N+P+ plots, which had a mean N:P ratio of 9. All plots were
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therefore N limited (if using N:P ratio as a tool to assign limitation (Koerselman &

Meuleman 1996)) due to the N:P ratios falling below 14, with the exception o f the control

plots in 2011, which had an N:P ratio of 14.6, and therefore co-limited, and N+PO plots

in 2011 which had a mean ratio of 18.3 and therefore P limited. Generally Leaches

meadow had low N:P ratios which according to Koerselman & Meuleman (1996),

suggests that the vegetation biomass is more likely to be enhanced by N fertilization. This

critical ratio should however be used with caution as it can only be used to indicate the

type of nutrient limitation when either N or P are limiting as for the majority o f grasslands

(Verhoeven, Koerselman & Meuleman 1996), rather than other factors, especially when

light or water supply is limiting (Giisewell & Koerselman 2002).

4.4.3 Nutrient offtake results

In 2010 and 2011 P offtake and N offtake were significantly increased in the N+P+ 

treatment plots compared with control treatments, this appeared to be driven by the 

increase in tissue P content percentage, and N tissue content in these plots, rather than an 

increase in vegetation production. Interestingly, in this study P offtake was increased 

significantly compared to the controls in 2013 by the addition of N and P together, but 

also unexpectedly the addition of N on its own. This could be due to increased N  

stimulating phosphatase activity via N:P stoichiometry effects, which potentially 

increases plant P uptake (Fujita et al. 2010). N addition has also been found to stimulate 

root phosphatase activity in calcareous grassland in representatives o f three major higher 

plant functional groups, although shoot N and P concentrations were not significantly 

affected (Phoenix et al. 2003). In the current study, root phosphatase activity was not 

measured, although significant increases in the plant nutrient offtake o f P by the addition
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of N implies stimulation of phosphatases for direct P uptake by the vegetation, which

supports the results of the findings of Johnson, Leake & Lee (1999), Phoenix et a l  (2003),

and Fujita et al. (2010). The nutrients taken up by the vegetation, (significant differences

in P offtake between controls and P2 plots) were not necessarily utilised for plant growth,

as demonstrated by the lack of difference in above-ground biomass between P0 and P+

and P2 plots in 2010 and 2011, although there was a non-significant increase by the

addition of P in 2013. This suggests either luxury uptake (Chapin 1980), which was also

the case in the experimental cutting plots within the growing season (Chapter 2) or

limitation by another factor, such as drought (Weltzin et al. 2003; Harpole, Potts &

Suding 2007). Plants are more prone to luxury uptake and internal storage o f P than o f N

(Verhoeven & Schmitz 1991; Aerts & Chapin 1999) which could be why P was readily

taken up by the vegetation, but not the limiting nutrient in terms of plant growth.

Similar to P offtake, N offtake was also significantly increased by the addition of 

N and P together (the N+P+ plots) in 2010 and 2011. In 2013 there was no significant 

difference in N offtake between treatment groups, however there was a nonsignificant 

increase in N offtake with the addition of P, N and P together and N alone, compared with 

the control plots. This signifies that the addition of P could increase N mineralization, 

which is the fundamental hypothesis of the study. The addition of 25 kg P ha yr'1 (P+ 

plots) produced no significant N offtake increase, which also supports the results of  

chapter 2. The increase in N offtake with the addition of N and P points towards an 

interaction between these two nutrients. Further evidence for P stimulating N  

mineralization follows from the incubation study.
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4.4.4 Nitrogen mineralization

The addition of P to soil cores (made from soil extracted from the study site) significantly 

increased the concentration of ammonium ions in extraction, as the strength of P solution 

increased. This again suggests that P addition had positive effects on soil net N  

mineralization in this experiment. Supporting evidence for P addition increasing net N  

mineralization is from a very recent study by Changhui et al. (2014), who also 

demonstrated an increase in soil net N mineralization and ammonification rates with P 

addition from soil of a saline-alkaline grassland in the Loess Plateau of northern China. 

They calculated mineralization rates from differences in soil NH4+ and NO3' 

concentrations by using the buried soil technique (Raison, Connell & Khanna 1987) 

during a 28 day in-situ incubation on permanent treatment plots. They suggested that there 

was a shift in the microbial community structure with the addition o f P, indicated from a 

significant decrease in the microbial biomass carbon and microbial biomass nitrogen 

(MBC/MBN) ratio with P addition. However, in contrast, another study (Li et al. 2010) 

found no effect of P addition on MBC: MBN ratios and negligible effects on soil net N  

mineralization rates or microbial properties in a semi-arid, sandy grassland in Northeast 

china. They found that N addition alone (and not N and P treated together, or P alone), 

caused a reduction in microbial biomass, which is also true o f nitrogen addition in 

temperate climates (Treseder 2008; Liu et a l  2014). Other supporting studies that imply 

N mineralization is linked to available P include Oorschot et al. (1997) where the 

available P pool was positively correlated with N mineralization using in-situ soil core 

incubations when comparing high nutrient and low nutrient slopes on two riverine 

wetlands in the UK. Similarly on Dutch heathlands, N-mineralization was positively
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correlated with the labile soil organic P-pool observed during incubation experiments of 

intact soil cores (Troelstra, Wagenaar & Boer 1990).

In order to simulate this test in the field, PRS-probes® were used to measure the 

nutrient supply rate to the vegetation, in place of extracting soil cores from the field which 

was too destructive. However, the results were inconclusive with supply rates of N 03-N  

increasing only in plots receiving N addition in 2011 and no significant differences or 

trends between treatment plots in 2011 or 2012. The PRS probe nutrient supply rate was 

extremely low in this experiment; ranging from 1.0-20 micrograms per 10 cm2 over eight 

weeks. This is atypical for a clay soil where values would usually fall in the range of 

1500-1700 micrograms, which is for an agricultural manured soil (Qian & Schoenau 

2005). In this case, it is a possibility that drought affected the soil nitrogen N pool since 

the microbial processes that regulate soil N availability are sensitive to variations in soil 

moisture (Bloor & Bardgett 2012), and therefore the ability of probes to acquire nitrogen 

as efficiently as usual at this time was affected by soil moisture deficit. Size and fluxes of 

the soil N pool are largely determined by precipitation events, which can impact N cycling 

(Verburg et al. 2009). The probes reflected a ‘snap-shot’ o f eight weeks in measuring the 

nitrogen supply rate to the plants which may have been severely limited by the drought 

at the time of burial, and in contrast were inundated by floodwater in 2012. The field 

nutrient addition experiment demonstrated that the plants were able to take up N and P, 

indicated by the significant differences in tissue N and P content between treatment 

groups, and the increase in N offtake by the addition of N and P, and the increase in P 

offtake by the addition of N.

Although below-ground cycling and interactions between N and P were not 

directly measured, these results could indicate co-limitation of N and P and interactions
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between multiple resources, which is the current thinking behind nutrient limitation 

(Harpole et a l  2011). For example, Marklein & Houlton (2012) investigated the 

interactions between N and P cycles of phosphatase enzyme activity by means of meta­

analysis synthesizing results from 34 separate factorial N and P experiments. They found 

that N fertilization enhanced phosphatase activity, and P fertilization suppressed rates of 

phosphatase activity which implies that phosphatase enzymes are strongly affected by 

changes in local nutrient cycles. This is also in agreement with other studies that have 

shown increasing N deposition increases phosphatase activity (Chung et a l  2007) and 

also in sites that are limited by P or co-limited by N and P (Olander & Vitousek 2000).

Mechanisms of plant uptake of P and N, and the differences between treatment 

groups in the field experiment could be partially explained by the behaviour of the below- 

ground arbuscular mycorrhizal (AM) fungi, which supply limiting nutrients to plant roots 

which are otherwise inaccessible (van der Heijden, Bardgett & van Straalen 2008). In this 

experiment, P tissue content percentage and indeed P offtake were enhanced significantly 

by the P2 treatments in all years, however above-ground biomass was not increased 

significantly in these plots, therefore the AM fungi may have altered the distribution of 

nutrients amongst co-existing species, without altering total vegetation productivity; as 

supported by van der Heijden et a l  (2006b). Multiple studies have shown that enhanced 

P uptake by plants is controlled by AM fungi, especially for certain species with high P 

requirements such as legumes, although the control of N uptake by AM fungi is less well 

reported with one study showing that N acquisition is indeed enhanced by AM fungi 

(Hodge, Campbell & Fitter 2001), and others reporting no effects (Reynolds et a l  2005; 

van der Heijden et a l  2006).
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Clearly from these array of field results, it is not as straightforward as assigning 

the vegetation to being exclusively N limited. The addition of N was the only treatment 

to cause a significant biomass increase in the vegetation, however offtake P and N were 

both increased by the addition of N and P together, which suggests co-limitation by both 

nutrients or other resource limitation (Harpole et a l  2011). This agrees with recent papers 

on co-limitation where there are likely synergistic interactions between multiple limiting 

resources (Elser et al. 2007; Farrior et al. 2013). Harpole et al. (2011) found support for 

strict definitions of co-limitation in 28% of 641 studies which applied a factorial addition 

of N and P in freshwater, marine and terrestrial ecosystems. Furthermore N and P 

stoichiometry can alter the competitive response of different species resulting in a 

changing community depending on the ability of different species or functional groups to 

take up N or P under P limited or N limited conditions (Venterink & Giisewell 2010). The 

species and community response to the factorial addition of N and P is investigated in 

chapter 5.

4.4.5 Legacy effects

In this study, significant differences in above-ground biomass between treatment plots 

and controls still existed in 2013 despite the last dose of N and P being administered in 

May 2011. Although N % in the plant tissue content was not significant between plots in 

2013, but P in plant tissue still showed a significant difference between treatments in 

2013. Therefore in 2013 offtake N differences were driven by vegetation productivity 

increases, and offtake P differences were driven by vegetation P tissue content 

percentage. Explanation for this difference could be due to the difference in resource 

acquisition of both N and P, in response to the specific nutrient requirements o f the 

vegetation. The available P (Olsen P) in the soil was also significantly different between
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treatment plots in 2013 despite the most recent application being in May 2011, 

demonstrating that P had not leached from the plots after 2 years, and after successive 

flood events and inundation. The lingering effect of N on the above-ground biomass in 

2013, despite cessation of treatment additions and no increase in tissue N content % could 

be due to a legacy effect of N on the microbial community contributing to changes in 

below-ground N cycling. Microbial activity could potentially remain elevated despite 

cessation of N additions after a number of years, with microbial biomass showing no 

significant effect (Power et al. 2006). Similar results were found in another study on a 

prairie grassland where total plant N had declined to control levels, with above-ground 

biomass increasing, following cessation o f N addition after 12 years with surface soil 

nitrate pool remaining higher than the controls, with higher rates of N mineralization 

detected, suggesting that the cycling of N was continuing long after the inputs of N ceased 

(Clark et al. 2009). Stevens et al. (2012) also found above ground biomass to be higher 

where N had been added, but with no significant effects on plant tissue chemistry, 15 

years following the cessation of N addition on a peat grassland in the UK. This 

demonstrates that recovery from N addition can be very slow, with the effects of N  

addition seen for many years following its cessation. This long lasting effect of N is also 

reflected in the changing vegetation species composition of grasslands, and is investigated 

in chapter 5 of this study, where species redundancy analysis scores were correlated with 

Ellenberg N values.
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4.5 Conclusion

From these results, the hypothesis in this investigation that the addition of P can 

significantly increase N uptake by plants in floodplain meadows can be partially accepted. 

Despite the addition of P exclusively, not stimulating the vegetation to increase uptake of 

N in the field experiment, the addition of P in combination with N produced a significant 

increase in N offtake. Supporting the hypothesis that increased P addition can lead to N  

mineralization was the laboratory experiment, where significantly increased levels of 

NH4+ were detected with increasing P concentration, which can be explained by elevated 

N mineralization. Addition of P in the field induced a non-significant increase in offtake 

N in 2013 which was the year of greatest precipitation in the factorial experiment and 

where the vegetation was not limited by moisture deficit. Therefore, the type of nutrient 

limitation may not be a static site characteristic, but may vary with changing 

environmental conditions (Venterink, Vliet & Wassen 2001), so the exact same 

experiment could produce different results in terms of above-ground productivity or 

nutrient offtake if  carried out over a different time frame or at different sites.

The above-ground vegetation biomass was primarily limited by N alone, although 

from the tissue nutrient content and offtake results and from recent publications on co­

limitation, the vegetation is unlikely to be limited by a single resource. The growing 

season in the first two years of the experiment (2010 and 2011), were uncommonly dry 

and therefore plant growth is likely to have been limited by water above any other 

resource. Significant changes in above-ground biomass were noted in 2013, 

demonstrating the persistence of nutrients within the system, however this was 2 years 

after the final nutrient addition. Similarly if  ‘average’ rainfall had ensued in 2010 and 

2011, above-ground biomass would have been very different and perhaps significant
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differences would have occurred between treatment groups. This study confirms links

between P and N cycling which support multiple resource limitation theories in that

changes in the cycling of one nutrient can affect the availability of another. These results

imply that increased P content in floodplain soils can lead to increased uptake of N by the

vegetation and thus enhancing the effects of N deposition. The results also support that

of Fujita et a l  (2010) and Phoenix et a l  (2003) who found increased N supply stimulated

phosphatase activity to potentially increase plant P uptake in a species-specific way. With

this in mind N deposition could lead to changes in plant community structure not only by

increasing productivity, but by favouring species that are able to persist under P limited

conditions. My findings not only support this, but may also imply the reverse of this; that

increased P supply could favour species that are more adapted to N limited conditions.

Chapter 5 investigates the effect of N and P on vegetation composition.
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5.1 Introduction

In the UK, much o f the loss of unimproved grasslands and floodplain meadows has been 

attributed to the increased use of artificial fertilizers (Bakker & Society 1994; Kirkham 

& Tallowin 1995; Silvertown et al. 2006). This loss has also been associated with declines 

in many plant and animal species (Janssens et a l  1998; Tallowin et al. 1998; Stevens et 

al. 2004; Dupre eta l. 2010).

Species richness and vegetation composition are often linked to nutrient levels in 

wetlands and grasslands. Variation in species richness and its relationship with 

productivity is described by Grime (1979) as a hump-shaped curve, with low species 

richness at low and high productivity. The hump-backed curve occurs because only a few  

species are adapted to nutrient poor conditions, and only a few dominant species are able 

to out-compete all others in nutrient rich environments. Janssens et al. (1998) investigated 

the relationship between soil chemical characteristics and plant diversity in West-Central 

European grasslands and demonstrated a hump-backed relationship between species 

richness and soil fertility. 281 sites were investigated and their soils sampled for pH, 

organic matter, total nitrogen, and exchangeable nutrients: phosphorus and potassium. 

They found that species number showed a hump-backed curve with soil extractable 

phosphorus and potassium, with maximum species achieved at only 4 m g/100 g of 

extractable P (acetate and EDTA extraction).

Species composition of plant communities can differ depending on whether 

nitrogen (N) or phosphorus (P) is the limiting nutrient, even if  total productivity o f the 

vegetation is the same (Venterink 2011). This has been demonstrated by long-term 

fertilization experiments, such as The Park Grass, where different species of grass 

dominate under N and P limitation, and legumes are more abundant under N limitation.
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Further to this, plant-species richness is also influenced by the type of nutrient limitation, 

though both the addition of N and P can reduce species richness through higher biomass 

and taller growing graminoids competing for light, rather than a direct mechanism 

(Gough et a l  2000; Beltman, Willems & Gusewell 2007; Bobbink et al. 2010). It has 

been suggested that P limitation can favour a higher species richness than N limitation 

(Wassen et a l  2005; Ceulemans et a l  2011; Venterink 2011). Venterink (2011) explains 

this difference in species richness by four different mechanisms. Firstly, the number of 

forms in which P and N are present in the soil and the number of plants to acquire them; 

secondly the mechanisms and traits that control species competition and coexistence 

under N or P limitation; thirdly the sizes of regional species pools for N  or P limited 

conditions; and lastly the interaction between the type of nutrient limitation and 

community productivity. Evidence is needed to support the above mechanisms in order 

to gain a better understanding of species competition under P limitation, and about the 

forms of N and P under different conditions and plant traits and mechanisms needed to 

acquire these nutrients.

Various papers have attempted to provide further evidence for differing levels of 

N and P application affecting species richness. In the Park Grass Experiment, as the 

amount of N applied increased, species richness decreased linearly with significant 

decreases in species richness between application rates of 0 and 50 kg N ha"1 y"1, 100 kg 

N ha'1 y"1 and 150 kg N ha'1 y'1, the greatest negative effects on species richness were 

when N and P were applied together (Crawley et a l  2005). Similar negative effects of N  

addition, even at low levels were found at Tadham Moor, Somerset, UK (Mountford, 

Lakhani & Kirkham 1993). Only 25 kg N ha'1 y'1 encouraged the spread o f agriculturally 

productive grasses within two years, and at 50 kg N ha'1 y'1 species richness was 

significantly reduced within three years. In terms of soil P levels, species
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rich wet grasslands are associated with lower levels of soil P (Critchley et al. 2002). 

Further to this, Ceulemans, Stevens & Duchateau (2014) surveyed 105 lowland hay 

meadows and recorded species richness and soil phosphorus (using the Olsen-P extraction 

method) and found the highest species richness occurred at lower levels of soil P. 

Maximum observed species richness did not exceed 20 species per 4 m2 beyond 80 mg P 

kg'1, compared to more than 40 species below 40 mg P kg'1.

Ceulemans et al. (2013) collected data from 132 semi-natural grasslands located 

along a gradient of nutrient availability and atmospheric N deposition, and then 

investigated the relation between soil nutrients, acidity, nutrient limitation and 

productivity against plant-species richness by use of linear mixed models. They found 

that soil P was significantly negatively related to total species number, forbs and 

endangered species, and soil N was only significantly negatively related to number of 

forbs and endangered species, but not species richness. They concluded that N  and P 

driven species loss were independent to each other, but that P enrichment can present a 

greater threat to biodiversity than N enrichment in some terrestrial ecosystems. Blanck et 

a l  (2011) studied shrub-land vegetation in northern Patagonia (Argentina) to ascertain 

whether there is a relationship between plant-species richness and plant-available N, P 

and water. They determined the leaf P and N  content and the 813C of Berberis buxifolia, 

and the soil P and N content at each of the 20 sites. They found a negative correlation 

between species richness and foliar P concentration, and a positive correlation between 

plant species richness and foliar N:P ratios. Foliar N showed no correlation with species 

richness, despite the fact that N:P ratios indicated that N was limiting plant growth while 

soil extractable NH4 showed a weak positive correlation with the number o f shrub layer 

species. They concluded that low levels of P correlate with high plant-species richness,
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and available N did not show such a relationship despite N:P ratios indicating that N  

limited vegetation productivity.

In terms of the effect of P on specific plant communities, there have been many long­

term experiments and numerous studies of nutrient addition on a range of grassland 

communities (Kirkham, Mountford & Wilkins 1996; Tallowin et al. 1998; Silvertown et 

al. 2006; Hejcman et al. 2010a). In the Park Grass Experiment legumes were favoured in 

plots receiving P alone (at rates of 35 kg P ha'1 y'1) and no N, whereas grasses were found 

to dominate in plots receiving only N (Silvertown et a l  2006). Similarly legumes, and in 

particular Trifolium pratense were also found to increase with the application of P and K 

on a species rich meadow at Tadham Moor (Kirkham, Mountford & Wilkins 1996), and 

all legumes were found to be suppressed with high rates of N application (100 or 200 kg 

N ha'1 y'1). High rates of P (application rate was 75 kg P ha'1 y'1) were also found to 

increase biomass significantly and severely reducing species diversity leading to 

dominance of Holcus lanatus, Rumex acetosa and Lolium perenne. More recently 

published papers on another long-term experiment, the Rengen Grassland Experiment 

(Hejcman et al. 2007, 2010b; Chytry et al. 2009) found that the largest difference in 

vegetation structure and composition was between the treatments with and without P 

application (rates were 35 kg P ha'1 y'1) . And among plots receiving P, plant species 

composition was similar with tall grasses such as Alopecurus pratensis, Arrhenatherum 

elatius and Trisetumflavescens dominating the sward. They also found that N application 

was not detrimental to species richness unless it was accompanied by another limiting 

nutrient such as P (Hejcman et al. 2007).

Clearly there is conflicting evidence between various studies as to which nutrient is 

most damaging to grasslands in terms of biodiversity. Consequently, there is still a need

130



CHAPTER 5. THE EFFECT OF P AND N ADDITION ON THE BOTANICAL
COMPOSITION OF FLOODPLAIN MEADOWS_________________________

for further research into N and P limitation on floodplain meadows, and specifically MG4 

vegetation as there is a lack of published work in relation to this habitat. In this chapter 

we address how plant community and species richness on a floodplain-meadow MG4 

community is altered by the addition of N and P, alone and in combination. The following 

questions will be addressed in this chapter:

1. Does the addition of P change the species composition of MG4 vegetation? (Page 

141-142)

2. Are there temporal changes in species composition and abundance with the 

addition of P? (Page 143-144)

3. What environmental variables are important in explaining species variation at 

Leaches Meadow? (Page 151-154)
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5.2 Methods

Details of the experimental set up for the factorial experiment are given in chapter 4. 

Additions of N and P were administered to specific plots in 2010 and 2011 in three 

treatment doses. Plots that had been treated with N (N+PO and N+P+ plots) were cut 

between 21st and 28th June in 2010 and 2011. Plots that had been treated with P (P2C1 

and P2C2) were cut between 28th June and 4th July in 2010 and 2011. Controls for the N+ 

plots were labelled ‘C6’ and controls for the P2 plots were labelled ‘C 7 \ The cut 

vegetation was split into functional groups, oven dried and weighed to establish the dry 

biomass for each treatment group. The vegetation of each factorial plot was surveyed 

before cutting, by estimating percentage ground cover of each species present in 2010, 

2011 and 2013. Plots were not cut in 2013, so cover abundance o f each functional group 

was used to replace dry weight in this year

5.2.1 Statistical analysis

For the years 2010 and 2011, above-ground dry biomass data were used to perform 

analysis on vegetation composition by functional group. For 2013 because cuts were not 

made, percentage cover data were used in the place of dry weight data and split into 

functional groups. These data were log transformed for statistical analysis to achieve 

homogeneity of variance. The relationship between above-ground dry biomass and 

percentage cover data was investigated using Pearson correlation. For each functional 

group there was a strong positive correlation between cover abundances and dry weight; 

the r2 value for graminoids were 0.919, forbs were 0.92, and legumes were 0.772 (table

5.1 in results section). Significance between treatment groups and year for species 

richness, Shannon-Wiener diversity and functional group was assessed using General
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linear models (GLM) in SPSS 21, incorporating analysis of variance with Tukey post- 

hoc tests to detect any significant differences between treatment groups, with significance 

set at the p  < 0.05 level. Block effects and hydrological variation were taken into account 

when building the model, by using block as a fixed factor and water-table depth as a 

covariate. Differences in percentage cover values between species, between treatments 

and between years were also assessed using General Linear Model repeated measures 

multivariate analysis in SPSS. Multivariate analysis of species data using ordination 

techniques was performed in Canoco 4.5.

The ordination techniques used in this chapter are based on the gradient lengths 

of the initial detrended correspondence analysis (DCA). As the length of the longest 

gradient was 2.359, the use of linear methods for the dataset were more appropriate. 

Principle components analysis (PCA) was used for investigating the variation in the 

dataset for species alone, and redundancy analysis (RDA) for investigating the variation 

in species which can be explained by the environmental variables. The significance of the 

environmental variables was tested in the constrained ordination by using Monte Carlo 

permutation tests. Variance partitioning was used to quantify the effects of groups of 

environmental variables.

5.3 Results

5.3.1 Species richness and diversity indices.

Species richness was significantly different between all years (/?<0.001) but not between 

treatments (p=0.148) (figure 5.1). The Shannon-Wiener (SW) diversity index was 

significantly different between years (p=0.042) although post-hoc analysis showed
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differences between 2010 and 2011 only (p=0.032). Shannon-Wiener diversity was not 

significantly different between treatment groups (p=0.275) (figure 5.2). In terms of 

species number per quadrat, the most diverse year was 2010 with a mean species richness 

of 17.5, with 14.3 in 2011 and 15.9 in 2013. Species richness and SW diversity, declined 

across the whole site in 2011, and showed some recovery by 2013, which was significant 

for species richness, but not SW diversity. Despite no significant differences in species 

richness between treatments, all treatment plots declined in species richness from 2010 to 

2011, but the greatest decline was seen in the P2 treatments, although this was not 

significant. Despite no significant difference between treatment groups, all treatment 

plots increased in species richness in 2013, except the N+P0 plots, which remained the 

same as 2011. Greatest recovery was in the N+P+ plots. This same trend was 

demonstrated by the SW index, except N+P0 plots declined again in 2013 (figure 5.2).
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Species richness 2010 
Species richness 2011 

□  Species richness 2013

N+PO N+P+ 

Treatm ent

P2 One Cut P2 Two Cuts

Error Bars: +/- 1 SE

Figure 5.1 Mean and standard error for (a) species richness per quadrat (m2) in each year and (b) 
species richness per quadrat for each treatment in each year
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Figure 5.2 Mean and standard error for species richness per quadrat (m2) for each treatment group 
in each year
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5.3.2 Functional group

Cover percentage values and above-ground biomass dry weight for each functional group 

were correlated with each other in analysis including all factorial plots for 2010 and 2011 

(table 5.1, figure 5.3). The correlation for each functional group was strongly significant 

(pcO.Ol for all groups, r=0.772 for legumes, r= 0.919 for graminoids and r=0.920 for 

forbs) and therefore when comparing functional group between years, cover was used as 

a substitute for dry weight in 2013 (figure 5.4, 5.5), as factorial plots were not harvested 

in 2013. These values were log transformed to obtain homogeneity of variance before 

calculating statistical significance between treatments and years.
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Figure 5.3 Relationship between percentage cover and dry weight for each quadrat in 2010 and 
2011

Pearson correlation between 
cover and dry weight p value

Legumes 0.772 <0.01
Graminoids 0.919 <0.01
Forbs 0.92 <0.01

Table 5.1 Pearson correlation between cover percentage and dry weight for each quadrat in 2010 
and 2011

Table 5.2 shows the results of the General Linear Model to test significance between 

species richness, SW diversity, and functional group between years and between
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treatment groups. Only graminoids and legumes were significant for year with post hoc 

differences displayed on figure 5.4.

Functional group was significantly different between years for graminoids and 

legumes (p<0.01), but not forbs (p=0.266) (table 5.2). Post-hoc tests showed that 

graminoids increased significantly between 2010 and 2013 (p<0.05), and 2011 and 2013 

(p<0.05) but showed no significant difference between 2010 and 2011 (p=0.946). 

Legumes decreased significantly between 2010 and 2013 (p<0.05), and 2011 and 2013 

(p<0.05), but also showed no significant difference between 2010 and 2011 (p=0.09). 

Forbs reduced in 2013 compared to other years, but this was not significant (p=0.266).

In terms of differences between treatment group within years, only legumes 

showed a difference in dry weight between treatments overall (p<0.01) with post-hoc 

differences significant for 2011. There were no other significant differences within years 

between treatments. In 2010 there was an increase in legume dry weight in P+ plots 

compared with P0 plots, which was also reflected in 2011 with a significant increase in 

legumes between controls and P+ plots (p=0.047). Legumes in 2013 showed no 

significant differences between treatment group, and the P+ and P2 treatments did not 

show any increase in legumes unlike the other years. Although not significant, there was 

an increase in graminoids in N+PO plots in 2011. Trends in functional group that were 

apparent in 2010 and 2011 were diminished by 2013 with no significant differences in 

functional group between any treatments.

Species richness was also correlated with dry matter P percentage, dry matter N 

percentage and N:P ratio, which were not significant (p>0.05).
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Factor Variable df F Sig.
Treatment Species Richness 5 1.691 0.148

SW diversity 5 1.297 0.275
Graminoid % 5 1.333 0.26
Forb % 5 0.973 0.44
Legume % 5 4.636 p<0.01

Year Species Richness 2 13.684 p<0.01
SW diversity 2 3.308 P<0.05
Graminoid % 2 7.511 p<0.01
Forb % 2 1.347 0.266
Legume % 2 29.674 p<0.01

Table 5.2 ANOVA table for species richness, SW diversity and functional group for each 
treatment group. Significance is shown for each variable.

■  Graminoids

■  Forbs

■ L egum es

2010 2011 2013

Figure 5.4 Mean and standard error for dry weight of vegetation for each functional group in 2010 
and 2011 and cover % for each functional group in 2013
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Figure 5.5 Mean and standard error for dry weight of vegetation for each functional group in (a) 
2010 and (b) 2011 and (c) cover % for each functional group in 2013 and (d) cover % for legumes 
in 2013- separate graph for clarity (no significant differences between treatments)

5.3.4 Species cover abundance

The most abundant species within the monitored treatment plots changed from 2010 to 

2013 (figure 5.6). In 2010 the most abundant species was Sanguisorba officinalis, and 

most abundant graminoids were Carex disticha, Festuca rubra, and Alopecuruspratensis. 

In 2011 there were two species of legumes (Lathyrus pratensis and Vicia cracca) which 

were two of the most abundant species in the plots, but were not present in the top twelve 

in 2010. By 2013 Sanguisorba officinalis was much less abundant reducing from a mean 

of 14% per quadrat in 2010, to just 2.8% with the most abundant species being mostly 

graminoids and the appearance of Carex riparia, Agrostis canina, Poa trivialis and 

Cynosurus cristatus as the most dominant graminoids.
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Year: 2010

Festrubr Carxacut Agrostol Anthodor ElytrepeSangoffi
Alopprat Holdana 

Error Bars: +/- 1 SE

Ranurepe Phleprat

Year: 2011

O’ 15-

Festrubr Sangoffi Holdana Carxdist Festarun Alopprat Ranuacri Carxripa Festprat Lathprat Vidcrac 

Error Bars: +/- 1 SE
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c
Year: 2013

2 5 “

Carxdist Carxripa Poatriv FestrubrAlopprat Sangoffi
Agrostol AgroCani Holdana Cynocris Ranuacri Phleprat

Error Bars: +/-1 SE

Figure 5.6 Mean and standard error cover abundance for top 10 species in a) 2010 b) 2011 and c) 
2013

Multivariate analysis of the species data showed that there was a significant 

difference in species abundance between treatment group overall and between years 

(/?<0.001). There was no interaction effect between treatment and year. Species that 

significantly increased or decreased between years are displayed on figure 5.7. The most 

pronounced differences were between 2013 and the other years where there was a 

significant increase in abundance of graminoids {p<0.05), such as Agrostis stolonifera, 

Alopecurus pratensis. Poa trivialis, Carex riparia, Cynosurus cristatus and Carex 

disticha. This was accompanied by a significant decrease in legumes Lathyrus pratensis, 

Trifolium pratense and Vicia cracca {p<0.05). Sanguisorba officinalis, Anthoxanthum 

odoratum and Festuca rubra all reduced significantly (/;<0.05) between 2010, 2011 and 

2013.
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Species that were significant between treatments combining all years (2010, 2011 

and 2013) were Agrostis canina, Festuca rubra, Lathyrus pratensis, Lotus corniculatus 

and Sanguisorba officinalis (p<0.05) (figure 5.8). Lathy rus pratensis was significantly 

increased in the P+ plots compared with the controls (p=0.021), and the N+PO plots 

compared with the P+ plots (p=0.013). Agrostis canina was significantly decreased in the 

P+ plots compared with the controls (p=0.022), and in the N+P+ plots compared with the 

controls (p=0.022). Festuca rubra was significantly decreased between cutting

frequencies, with an extra cut decreasing abundance (p=0.004). Sanguisorba officinalis 

was significantly increased in the P2C2 cuts compared with the controls and the P2C1 

treatment plots (p=0.033, and p=0.015). The abundance of Lotus corniculatus was 

significantly increased in the N+P+ plots compared with N+PO (p=0.043).
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Figure 5.7 Mean species cover abundance for each year for species that 
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Figure 5.8 Mean and standard error cover abundance for species that were significantly different 
between treatments including all years

5.3.2 Ordinations

The PC A of species and samples for 2010, 2011 and 2013 show overlap of 2010 and 2011 

species data, with 2013 displaying an obvious difference in species composition to the 

other two years (figure 5.9). Axis 1 on the PCA is correlated significantly with Ellenberg 

F values for moisture using Pearson correlation (r= 0.330, /?=0.027). On the combined 

species and samples PCA diagram (figure 5.9c), species correlated with the year 2013 

were Carex riparia, Carex acuta, Agrostis stolonif era, Alopecurus pratensis and 

Cynosurus cristatus. Whilst years 2010 and 2011 overlapped in terms of their species

3 0 -
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composition, Year 2010 was more highly associated with Sanguisorba officinalis and 

Year 2011 with Festuca rubra and Festuca arundinacea.
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Figure 5.9 Principle components analysis ordination diagrams (PCA) of (a) species data (b) 
samples (quadrat) data, and (c) species and samples data for 2010, 2011 and 2013

The redundancy analysis (and Pearson correlation analysis) showed that water- 

table depth (WTD) was highly correlated with axis 1 on the ordination diagram (figure 

5.10). 30.7 % of species variation can be explained by the environmental variables 

(elevation, water-table depth, calculated growing day degrees, N addition, P addition and 

cutting twice), with all variables showing significance (/?<0.05) except for N addition and 

year. Variance partitioning showed that the variables explaining most of the variation in 

species data were elevation (explaining 6.3% of species variation), plots cut twice 

(explaining 3.8% of species variation) and P dose (explaining 2% of species variation). If 

water-table depth (WTD) and elevation were grouped together in analysis (due to being
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highly correlated), they explain 7.4% of the total variability in species data. Sample 

distribution shows 2010 and 2011 from -1.0 to 0 along axis 2, with 2013 from 0 to +1.0. 

The species associated with plots monitored in 2013 were Carex spp, Juncus spp. and 

certain grasses (Alopecurus pratensis, Agrostis stolonifera, Poa trivialis) indicating a 

shift to a community dominated by graminoids rather than forbs or legumes. This is also 

apparent in the functional group data analysis.

N dose was not significant after performing Monte Carlo permutation tests (table 

5.3). Environmental variables that had a significant effect on species composition over 

the three years were calculated growing day degrees, water-table depth, elevation, P dose 

and cutting twice (p<0.05). Non-significant variables were year (p=0.206) and N dose 

(p=0.138). On the RDA (figure 5.10), species correlated with water-table depth were 

Centaurea nigra, Lotus corniculatus. Species correlated with elevation were Sanguisorba 

officinalis, and species correlated with cgdd were Festuca rubra, Trifolium pratense, 

Holcus lanatus and Vicia cracca.
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Variable p value F ratio % expl. 
1st axis

cgdd 0.002 12.16 1.9
Elevation 0.002 6.06 6.3
WTD 0.002 6.06 1
Cut Twice 0.004 3.48 3.8
P dose 0.014 2.52 2
N dose 0.138 1.46 1.3
Year 0.206 1.25 1.1

Table 5.3 Summary of Monte Carlo permutation tests for RDA for environmental and species 
data for 2010, 2011 and 2013

In order to separate out the effect of treatment additions from time; an additional 

RDA was produced using year and the interaction between year and treatment as 

environmental variables in the analysis (figure 5.11). Variables that were significant in 

explaining the species variation were 2011*P2C1 (/?=0.004), 2011*P+ (p=0.004), 

2013*P2C2 (p=0.004), 2013*N+P+ (p=0.036) and 2011*N+P0 (p=0.004). Plots in 2010 

and interactions between treatment group were not significant, and therefore not 

displayed on the diagram to avoid overcrowding. Plots in 2013 and interaction between 

N+PO, P+ and P2C1 were not significant but left on the diagram as there was correlation 

between these treatment groups and certain species. The ordination diagram indicated 

significant increase in Sanguisorba officinalis, Lotus corniculatus and Vicia cracca in 

2011 in P2C2 plots. Lathy rus pratensis, Trifolium pratense, Trifoium repens, Ranunculus 

acris and Festuca rubra were all increased in the P2C1 plots and P+ plots, which was 

significant (/?=0.004). Plots in 2013 had increased cover o f Cynosurus cristatus, Agrostis 

sp, Carex acuta, Alopecurus pratensis, Poa trivialis and Juncus acutifloris, but only 

treatment N+P+ was significant.
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Figure 5.11 RDA of environmental variables as treatment and year, and species data. 18.8 % of 
species variability was explained by the 1st axis, with an F-ratio of 3.72, p=0.004 using 499 
permutations under the Monte Carlo permutation test

5.2.4 Principal response curve

The principal response curve (PRC) displays the development of the vegetation 

community under the different treatments from 2010 to 2013 (figure 5.12), with the 

baseline at 0.0 representing the control group. The vertical scores of the PRC are based 

on the scores of the environmental variables (in this case, the treatment groups) where the 

sampling time indicators are used as covariables and the interactions between the 

treatment levels and sampling times stand as environmental variables (Smilauer & Leps
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2003). Testing for the significance of the first principle curve (the first axis) in the analysis 

was not significant (p=0.628), the second, third and 4th axes were also not significant 

(p>0.05). However, there are some trends in species composition that can be observed. 

The dominant species shifted (such as Sanguisorba officinalis and Filipendula ulmaria) 

from 2010 to Carex riparia, Agrostis stolonifera, Cynosurus cristatus and Carex acuta in 

2013. Changes in time had more of an effect than the treatments; although the greatest 

change in species composition was seen in the N+P+ and the P2C1 treatments. P2C1 

shifting from Lotus corniculatus and Achillea ptarmica to Carex disticha, and N+P+ from 

Sanguisorba officinalis towards dominance by graminoids.
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Figure 5.12 Principal response curve of species data and treatment effect from 2010 to 2013
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5.4 Discussion

5.4.1 Species richness

The results for species richness and Shannon-Wiener diversity demonstrate no significant 

changes between treatment group, but significant changes over time (from 2010 to 2013). 

Declining from 2010 to 2011, and then showing some recovery in 2013, which is site 

specific rather than dependent on treatment additions, as the controls behaved in the same 

way as the treatment groups. The lack of treatment effect on species richness is contrary 

to the findings of the majority of studies, which show a negative effect of nutrient addition 

on species richness (Mountford, Lakhani & Kirkham 1993; Janssens et a l  1998; 

Ceulemans et a l  2011, 2013). Although the results were not significant in terms of mean 

species richness, the trend was for this variable to reduce in response to the addition of P 

compared to the controls in all years. Therefore if the P addition had been continued for 

longer than 2 years a significant detrimental effect on species richness may have occurred. 

Other studies found that application of N at relatively low levels (25 kg N ha'1 y'1) 

encouraged the spread of agriculturally productive grasses within two years of  

application, although species richness was not significantly reduced until three years after 

application with 50 kg N ha'1 y'1 (Mountford, Lakhani & Kirkham 1993). Kirkham, 

Mountford & Wilkins (1996) found that N application caused a species decline more 

quickly than P application.

The treatment group with the greatest decline in species richness from 2010 to 

2011 was the P2 treatments. The addition of N alone, and N and P together had no effect 

on mean species richness. This aligns with other studies that suggest that P could be more 

detrimental to species richness than N (Janssens et al. 1998; Wassen et a l  2005; 

Ceulemans et al. 2011). The reason for decline in species number between 2010 and 2011
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could be due to drought from the exceptionally dry year in 2010 (Tilman & Elhaddi 1992; 

Van Peer et al. 2004). van Oorschot et al. (2000) found that summer drought on floodplain 

soils reduced nutrient availability, plant production and nutrient uptake after simulating 

effects of different flooding regimes on soil nutrient availability. Had there been more 

rainfall in the dry growing seasons of 2010 and 2011, there may have been more o f an 

effect of the nutrient additions, as uptake would not be limited by moisture deficit (Araya, 

Gowing & Dise 2013).

The mean species decline from 2010 to 2011 was a reduction in three species per 

plot, and 4 species in the P2 plots. Species Rhinanthus minor, Rumex acetosa, Oenanthe 

fistulosa, Carex nigra, Cerastium fontanum, Elytrigia repens and Poa trivialis all 

declined in abundance from 2010 to 2011. Rhinanthus minor can be absent from habitats 

affected by drought, which may be the reason for its absence in 2011 compared with 2010, 

following very dry conditions in early 2011 which may have affected its germination 

(Grime, Hodgson & Hunt 1988). Rhinathus minor is also susceptible to competition by 

taller growing species and sensitive to high sward density and biomass production 

(Lindborg, Cousins & Eriksson 2005) and suffers from long-term N, NP and NPK 

application in grasslands (Hejcman, Schellberg & Pavlu 2011). At Leaches, the highest 

abundance of Rhinanthus minor was in the control plots in 2010, although this was not 

significant. In plots where abundance of Sangusiorba officinalis was high (>15%), 

Rhinanthus minor cover was low, therefore its disappearance may be associated with 

being outcompeted by taller growing forbs (Hejcman, Schellberg & Pavlu 2011). There 

was also notable absence of Poa trivialis in 2011, which could be explained by its very 

shallow root system and sensitivity to drought (Grime, Hodgson & Hunt 1988).
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5.4.2 Functional group composition

The significant increase in legumes observed in 2011 with the addition of P, agrees with 

other studies and long-term experiments where legumes were more abundant under N  

limitation (Tilman 1982; Bobbink & Willems 1991; Kirkham & Wilkins 1994; 

Silvertown et a l  2006; Honsova, Hejcman & Klaudisova 2007). This is due to legumes 

being able to grow with a lower N supply than grasses, so when given sufficient N, grasses 

have the competitive advantage over legumes in competition for P thus grasses dominate 

under N-fertilized conditions, and legumes under P fertilization in the absence o f N  

(Silvertown et al. 2006). This would explain the significant increase in legumes in the P 

fertilized plots in this experiment, and also the non-significant trend for an increase in 

graminoids in the N+PO plots in 2010 and 2011. By 2013, trends showing an increase of  

legumes and decrease in graminoids in relation to treatment addition had diminished 

which could be due to the response of the vegetation community to summer flooding in 

2012, which may have had more of an effect on the species composition than the 

treatment additions (Beltman, Willems & Giisewell 2007).

5.4.3 Species composition

The results of the PCA demonstrate that the vegetation community altered from 

overlapping in 2010 and 2011 to a narrower community dominated by graminoids in 

2013; this is also in agreement with the functional group dry weight and cover percentage 

results where graminoids increased and legumes decreased significantly in 2013 

compared to other years, which again was likely to be weather related than treatment 

dependent. Forbs decreased in 2013 relative to other years, but this was not significant. 

The significant correlation between axis 1 and Ellenberg F values (soil moisture status)
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indicate that the composition of the vegetation community was driven by changes in soil 

moisture. The significance of soil moisture was confirmed by the redundancy analysis in 

which water-table depth was highly significant in explaining 7.4% of the total variability 

in species data. Many studies have also confirmed that soil-water regime has a significant 

role in the composition of plant communities (van Oorschot et al. 2000; Leyer 2005; 

Toogood & Joyce 2009). On floodplains of the Elbe river in Germany, the response of 30 

common grassland species to soil moisture and water level fluctuations was assessed, 

with the majority of species responding significantly to water level fluctuations (Leyer 

2005). Similarly, Toogood & Joyce (2009) also found that increases in water levels can 

significantly alter plant community structure with the potential for rapid conversion to 

wetland vegetation following substantial increases in water levels. Increased productivity 

of graminoid species after prolonged flooding events has been shown by other studies 

(Insausti & Soriano 1987; Chaneton, Facelli & Leon 1988; Chaneton & Facelli 1991). 

For example, Insausti, Chaneton & Soriano (1999) demonstrated a remarkable increase 

in the abundance of graminoid species with increased flooding in a mesocosm experiment 

due to graminoids maintaining substantial below-ground growth during inundation. Most 

graminoids that increase with flooding possess anatomical adaptations such as root 

aerenchyma, hollowed shoots or the capacity to elongate shoots above the water surface 

to avoid submergence (Rubio, Casasola & Lavado 1995; Loreti & Oesterheld 1996; 

Insausti, Chaneton & Soriano 1999). At Leaches Meadow, species correlated with lower 

water tables were Lotus corniculatus, Centaurea nigra, Ranunculus acris and Festuca 

pratensis which are less tolerant of waterlogging (Grime, Hodgson & Hunt 1988). Species 

that were more abundant in 2013 than other years were not necessarily correlated with 

water-table depth on the RDA but were separated from other species by difference in 

calculated growing day degrees; these were Carex riparia, Agrostis canina, Agrostis
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stolonifera, Alopecurus pratensis, Poa trivialis which were all more abundant in 2013 

and closely associated with the wetter end of the MG4 vegetation classification (Rodwell 

1992). Holcus lanatus reduced in dominance in 2013 compared to 2010 or 2011, which 

is known to have lower productivity with higher water tables (Mountford, Lakhani & 

Kirkham 1993). Similar results are also shown by the principal response curves with the 

vegetation becoming dominated by graminoids over time, although this only took 

treatment addition into account and no other environmental variables. The implications 

of this are floodplain meadows becoming increasingly dominated by graminoids with 

wetter and warmer conditions, which can outcompete forbs and slower growing species. 

This could result in a rapid vegetation community shift from MG4 to species poor MG4 

(with increase in Poa trivialis and Agrostis stolonifera higher in constancy than in the 

published floristic table for the community), to Lolium perenne-Alopecurus pratensis - 

Festuca pratensis flood pasture (MG7), which was observed in permanent quadrats in 

North Meadow NNR at Cricklade in response to heavy rainfall and floods experienced 

between 1999 and 2001 (Gowing eta l. 2002).

In terms of treatment effect on species composition; the results of the Monte Carlo 

test and variance partitioning from the RDA demonstrate that P addition had a significant 

effect on species composition explaining 2% of total variation in species data. Although 

the effect of P was significant, it was not as pronounced as other environmental variables 

such as elevation, water-table depth, plots cut twice and calculated growing day degrees. 

The small amount of variation explained in the RDA provides an indication of why the 

lower P treatment does not correlate with any species in the ordination diagram. However, 

the significance of P in explaining species composition is a fundamental result of the 

investigation that in spite of fluctuations in water table and soil moisture due to extreme 

weather events, the community composition was still significantly changed by the
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addition of P. This demonstrates the importance of P in determining floodplain meadow 

composition and is a key outcome of this study.

The principal response curve demonstrates that the P2 treatments encouraged 

species such as Lotus corniculatus in 2010, Trifolium pratense and Centaurea nigra in 

2011 and progressed to Carex disticha in 2013, which also agrees with the functional 

group data as the addition of P increased species of legumes, which has been well 

documented (Kirkham & Wilkins 1994; Silvertown et al. 2006; Honsova, Hejcman & 

Klaudisova 2007). N addition was not significant in explaining species variation, and 

indeed N+P0 plots did not differ too much from the controls on the PRC. N+P+ plots 

showed most change in species composition from 2010 to 2013 according to the PRC, 

mostly due to the reduction in abundance of Sanguisorba officinalis in these plots, 

however this was not significant. Negative effects of N addition and deposition has been 

widely reported in the literature, reducing species richness overall which is driven by loss 

of forbs rather than other functional groups (Stevens et al. 2004, 2010; Dupre et a l  2010; 

Maskell, Smart & Bullock 2010). N was not significant in explaining the species variation 

in this study, nor was it detrimental to species richness, however its effects cannot be 

compared like for like with P, as the design of the experiment was such to test the effects 

of P addition rather than N so explanatory power of the results relating to N are slightly 

diluted. Nevertheless, the effects of N on species composition were still non-significant. 

This was consistent with the findings of Hejcman et al. (2007) who found that N was only 

detrimental to species richness when applied in combination with P, with the lowest 

species richness occurring in those plots. Furthermore, Blanck et al. (2011) found that 

increasing levels of available P was one of the factors that reduced species on a local scale 

in a temperate shrub-land, despite N:P ratios indicating that plant growth was N limited. 

In this thesis there was no effect on species richness with either N or P addition, so
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parallels cannot be drawn from a biodiversity perspective. However, P was significant in 

explaining community composition, in spite of the productivity being N limited (chapter 

4), and N:P ratios also confirming N limitation (Koerselman & Meuleman 1996; 

Verhoeven, Koerselman & Meuleman 1996), which is consistent with the findings of 

Blanck et al. (2011).

The P2 treatments that were cut twice were significant in the redundancy analysis, 

Sanguisorba officinalis significantly increased in these plots, and Festuca rubra 

significantly decreased. This is contrary to the findings of chapter 3 and other studies 

where cover of Festuca rubra was increased by cutting due to less competition for light 

(Huhta 2001; Hellstrom et al. 2006). However, in this case the reduction o f Festuca rubra 

could be a direct response to the increase in Sanguisorba in these plots outcompeting 

species of smaller stature. Abundance o f Sanguisorba officinalis was also increased 

significantly by the addition of P (apparent in 2010 and 2011), which could also explain 

the significant decrease of other species in these plots such as Agrostis canina due to 

shading from Sanguisorba preventing seed setting (Grime, Hodgson & Hunt 1988). These 

results are in agreement with a number of studies that demonstrate P to have differing 

effects on species composition to N (Honsova, Hejcman & Klaudisova 2007; Chytry et 

al. 2009). Hejcman et al. (2010a) found that the most powerful predictors o f plant species 

composition in the Rengen Grassland experiment in Germany were soil P, K and Mg 

contents with soil P leading to a significant negative effect on species richness.

Species richness and Shannon-Wiener diversity remained unchanged by nutrient 

additions in the plots at Leaches, P dose was significant in explaining more variability in 

species composition than N (which was not significant) which supports the findings of 

other studies carried out in North-west Europe which demonstrated that most sites were
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more sensitive to the effects of P, than the effects of N in terms of species richness 

composition (Wassen et a l  2005; Hejcman et a l  2007; Ceulemans et a l  2011).

Redundancy analysis was used to separate out the effects o f treatment and year, 

by using interactions between year and treatment as covariables, which demonstrated that 

treatment had a significant effect on vegetation community independent o f year, and that 

year was significant in explaining variability in species community independent of 

treatment group. Year was not significant in the first redundancy analysis, probably 

because its effects were outweighed by the effect of growing day degrees and water table. 

In separating out year and treatment from the other environmental variables, species such 

as Carex riparia, Carex disticha, Agrostis stolonifera, and Agrostis canina were 

correlated with year, which supports the results from the species abundance graphs and 

original PCA analysis and are species that are able to withstand more waterlogged 

conditions (Kalusova et a l  2009). Agrostis stolonifera is able to exploit aquatic habitats 

and mires and has capacity to exploit pockets of nutrient enrichment and canopy gaps, 

and is most abundant where growth of tall dominant species has been restricted (Grime, 

Hodgson & Hunt 1988). Sanguisoriba officinalis decreased from 2010 to 2013, despite 

being tolerant of moist conditions, this could be due to this species occupying a distinct 

zone within a narrow range of water-table depths, thus the flooding in 2012 gave rise to 

waterlogged conditions that were too wet for the optimum growth o f Sanguisorba (Araya, 

Gowing & Dise 2013). The overall site community change from a slightly more diverse 

sward containing more species of herbs to a site dominated by graminoids may have been 

driven by a series of flood events in 2012. Particularly long periods of inundation in the 

spring and summer can be more detrimental to species survival (van Eck et a l  2004), as 

floodplain meadow species are more sensitive to a change from dry to wet conditions, 

than the reverse. This was investigated in a study by Jung, Hoffmann & Muller (2009)
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who recreated two contrasting hydrological scenarios; a flooding scenario and a dry 

scenario. They found certain species increased their above-ground biomass significantly 

in the flooding scenario (Holcus lanatus, Festuca arundinacea, and Alopecurus pratensis) 

but were not significantly affected by the drying scenario. However at Leaches, 

Alopecurus pratensis increased in abundance in 2013, but Festuca arundinacea and 

Holcus lanatus both reduced, suggesting different species were affected by inundation in 

this case. Festuca arundinacea has a well-developed root system and is more tolerant of 

drought than waterlogging (Perlikowski et a l  2014), which may be the reason for not 

increasing in abundance in 2013, following the floods of 2012. Although Holcus lanatus 

is more tolerant of waterlogging and occurs in high percentage occurrence in hydrology 

class A (Grime, Hodgson & Hunt 1988) so its decrease in 2013 could be due to increase 

of other species rather than an actual response to waterlogging. Species o f frequently 

flooded areas can show many characteristics of a competitive strategy such as erect tall 

stature and high growth rate and hence are stress-tolerant competitors (Grime 1979). 

Such species (Alopecuris pratensis, Agrostis stolonifera, Carex disticha and Carex 

riparia) became more abundant at Leaches following the extremely wet year of 2012 

which resulted in an overall site specific vegetation community shift to more flood 

tolerant species. This supports evidence from a study by Araya, Gowing & Dise (2013) 

who found that graminoids dominate meadow communities in areas with wetter regimes 

or higher N availability; they were able to determine the point at which a switch between 

forb to graminoid dominance occurs below a mean spring water-table depth of 55 cm 

where soil N availability decreases substantially. A poorly drained MG4 vegetation 

community can shift to MG7C (Lolium perenne-Alopecurus pratensis-Festuca pratensis) 

flood pasture (Rodwell 1992), which has been observed over a relatively short time frame 

of under two years at Cricklade in the UK, in response to heavy rainfall and floods after
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the winters of 2000/2001 (Gowing et a l  2002) which supports the reason for rapid 

community change at Leaches being due to a wetter water regime adopted following wet 

conditions in 2012.

5.5 Conclusion

Overall, no treatment combination in this experiment reduced species richness of this 

MG4 habitat. This is perhaps due to treatments needing longer to elicit a response on the 

vegetation; most treatment addition studies have applied treatments in excess of three 

years (Bobbink & Willems 1991; Mountford, Lakhani & Kirkham 1993; Silvertown et 

a l  1994; Honsova, Hejcman & Klaudisova 2007). However, the most likely reason is the 

impact of the extreme weather conditions; firstly the droughts in the spring and summer 

of 2010 and 2011 leading to reduced nutrient uptake and alteration of soil nutrient 

dynamics (Verburg et a l  2009). And secondly the impact o f the major flood events in the 

spring and summer of 2012, leading to a shift in the vegetation community from drier 

vegetation, to a vegetation community more tolerant of waterlogging, despite previous 

fertilizer treatments. However, there was a small effect of treatment on the vegetation 

community regardless of time; the addition of P was significant in increasing the 

proportion of legumes in 2011. Furthermore, the addition of P increased individual 

species such as Sanguisorba officinalis and was significant in explaining some of the 

variation in species data at Leaches. This is particularly significant as extreme weather 

conditions between 2010 and 2012 had a considerable effect on the species composition, 

but in spite of this P was still significant. N was not significant in explaining species 

variation or changing the species composition at the site, however this cannot be 

attributed to the greater effect of P than N overall, due to the design o f the experiment
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and the role of other environmental variables in explaining the species composition. 

Longer term treatment additions at multiple MG4 sites would be needed to confirm the 

significance of P addition in relation to N addition in determining the species composition 

of floodplain meadows.

Nevertheless this is a crucial outcome of this thesis, that despite water table 

fluctuations throughout the duration of the experiment and extreme weather events from 

2010 to 2012, the community composition still responded to P addition. This 

demonstrates the importance of P in determining floodplain meadow composition, in 

conjunction with and regardless of water regime. Furthermore, chapter 4 indicated that 

above-ground production was N limited (or co-limited) which highlights the relevance of 

P despite not limiting vegetation productivity. This is the only solid evidence o f this 

nature reported on this vegetation type in the UK, and dispels earlier theories about N:P 

ratios able to determine the type of nutrient limitation on floodplains (Verhoeven, 

Koerselman & Meuleman 1996).
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6.1 Introduction

The primary aim of this thesis was to investigate the role of phosphorus availability in 

determining the plant community composition of floodplain meadows. The effect of P 

addition on MG4 vegetation was studied in terms of above-ground biomass production, 

nutrient offtake and nitrogen mineralization. This was achieved by conducting two field 

experiments; a factorial design nutrient addition and sequential cutting date experiment; 

and a laboratory experiment investigating the influence of P addition on soil-nitrogen 

mineralization. A secondary aim was to determine the type of nutrient limitation on 

floodplain meadows. This was incorporated into the factorial design element of the 

experiment.

The community composition was assessed by a field survey, and by dividing dry 

weight samples of each plot into functional groups. Results of this work are relevant for 

the management and conservation of floodplain meadows in terms of identifying when to 

cut a meadow, and the implications of nutrient inputs for community composition.

6.2 The impact of P addition on N uptake

Contrary to the initial hypothesis that the rate of N-mineralization in floodplain soils may 

be limited by the availability of P, the results of the field experiment did not demonstrate 

that P addition necessarily increases plant N uptake. However the addition of P in 

combination with N did produce a significant increase in N offtake suggesting a role for 

phosphorus in nitrogen uptake. The laboratory incubation experiment was also used to 

test this hypothesis, and its findings demonstrated that phosphorus availability was 

significant in increasing ammonium and nitrate ions in the soil, indicating increased N  

mineralization (section 4.3.7). Other studies have found that an increase in the P loading
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rate can lead to increased organic N mineralization in wetlands (White & Reddy 2000; 

Changhui et a l  2014), leading to an increased availability o f N which could have 

detrimental effects to floodplain meadows in terms o f altering species composition and 

potentially reducing species richness.

N:P ratios in plant tissues suggested N limitation (section 4.3.4). This supports the 

initial view on N:P ratios when this thesis was proposed; that they can be used to 

determine the type of nutrient limitation on grasslands (Koerselman & Meuleman 1996; 

Verhoeven, Koerselman & Meuleman 1996; Giisewell, Koerselman & Yerhoeven 2003). 

However the results of this thesis also refute this, showing that community composition 

and nutrient offtake was responsive to phosphorus addition. Therefore N:P ratios cannot 

be used exclusively to assign the type of nutrient limitation on grasslands or floodplains. 

Studies published since this thesis commenced also support this view (Ceulemans et al. 

2011, 2013), which also agrees with evidence that phosphorus is important even when it 

is not limiting productivity (Wassen et a l  2005; Venterink 2011).

The results observed in this study suggest that co-limitation of N and P is more 

likely on floodplain meadows than single resource limitation, as the addition of N and P 

together gave rise to the greatest offtake N from the vegetation. The results support 

synergistic interactions between multiple limiting resources (Elser et a l  2007). Patterns 

of nutrient limitation in floodplain meadows need to be considered in management, 

especially the interactions between N and P. The use of N:P ratios for defining nutrient 

limitation on floodplain meadows therefore has restricted uses; due to the results 

demonstrating productivity was limited by N, but the vegetation community and N  

offtake was responsive to P addition. Hence P is important despite not necessarily 

regulating above-ground production. This supports recent work by Ceulemans, Stevens 

& Duchateau (2014), who found plant species richness to be consistently negatively
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related to soil phosphorus. They also highlight the importance of including phosphorus 

free fertilization as part of agro-environmental schemes.

The effects of P addition are potentially two fold with direct effects of P loading, 

and indirect effects with increased N availability. Coupled with the increasing rates of 

nitrogen deposition, addition of phosphorus could be substantially damaging to grassland 

communities and result in further species loss and habitat decline, as the negative impacts 

of nitrogen on grasslands have been widely reported with overall reduction in species 

richness (Stevens et al. 2004, 2010; Cleland & Harpole 2010). This is especially relevant 

in view of recent climate change predictions of wetter, milder winters in the UK (Hulme 

et a l  2002), which may increase flood events leading to enhanced P deposition on rural 

floodplains by increased sediment inputs rich in P.

6.3 Management in response to increased nutrients

To avoid further species loss and habitat decline of these important floodplain 

ecosystems, they must be carefully managed (Hansson & Fogelfors 2000; Mountford, 

Roy & Cooper 2006; Go wing & Wallace 2010). Management must consider the balance 

of its impact on species richness, above-ground productivity and the nutrient status of the 

ecosystem, as mowing and hay removal can directly influence productivity and nutrient 

content by removing biomass, leading to a reduction in nutrient status o f the soil and 

vegetation. In this study a cutting trial was implemented to investigate if  the timing of the 

hay cut was important in terms of maximum nutrient removal, and the subsequent impact 

on species composition. The nutrient tissue content of the vegetation (both N and P 

percentages) declined from May to July in the growing season, and combined with 

patterns of the vegetation productivity to generate values for nutrient removal in terms of 

N and P offtake. The optimum time to cut this type of vegetation community was around
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the middle of June for unfertilized plots, and circa the middle of July for P fertilized plots 

(section 2.3.3). P addition in this experiment delayed the peak standing biomass of the 

vegetation within the growing season. Other studies have reported ceiling biomass yield 

to occur later in the season for unfertilized grasslands than for agriculturally improved 

grasslands, which is due to species-rich unfertilized grasslands having a slower growth in 

the spring and early summer (Robson 1981; Tallowin & Jefferson 1999). This is the 

reverse of the findings of chapter 2 where the addition of P was found to delay the peak 

standing biomass, however other factors may have driven the nutrient uptake and 

productivity of the vegetation. For example, summer drought has been found to reduce 

nutrient uptake by plants and limit vegetation productivity o f floodplain soils (van 

Oorschot et al. 2000; Venterink, Vliet & Wassen 2001).

In this experiment the results of the cutting trial were markedly influenced by the 

exceptionally dry weather conditions experienced in the spring and summer o f 2010 and 

2011. Soil-moisture deficit is a key factor influencing the variability of yield between 

years (Dodd et al. 1994), which agrees with the findings of Smith (1960) that there is a 

close relationship between hay yield and actual transpiration, which in turn is related to 

soil-moisture deficit during the growing season. The relationship between hay yield and 

transpiration was tested in this experiment (section 2.3.2) and also found to be in 

agreement with Smith (1960) resulting in above-ground biomass being limited by soil- 

moisture deficit rather than nutrient availability in 2010 and 2011. Coupled with the 

results of chapter 3 (section 3.3.4), cutting date was significant in explaining the species 

composition of the vegetation, which reinforces current management practices in 

floodplain meadows, for maintaining typical species assemblages (Baker 1937; Go wing 

et al. 2002).
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Based on these results, it is important that cutting dates for floodplain meadows 

remain flexible for example on sites that are nutrient deficient, a later cut might be 

beneficial in removing less N and P from the system, whilst a cut in advance of peak 

biomass might remove excess nutrients from comparatively P and N rich sites. Cutting 

frequency can also be used to manage undesirable species such as coarse species of sedge 

(Newman 2013), although cutting twice was not significant in explaining the species 

composition in this experiment, and did not decrease the availability o f P (Olsen 

extractant method) in these plots over three years of cutting management or significantly 

increase the offtake N and P in the above-ground biomass. Individual species can also be 

managed to increase or decrease in abundance by changing cutting dates (section 3.3.3); 

for example, Festuca rubra was increased in abundance by cutting earlier, possibly due 

to the removal of other more competitive species and the reduction in canopy height of 

those plots. Some species thrived in plots cut later including Phleum pratense, 

Anthoxanthum odoratum, Centaurea nigra and Oenanthe fistulosa. This is likely to be 

due to a combination of individual species phenology such as late season growth in the 

case of Anthoxanthum odoratum  (Lambrechtsen 1968) and competitive exclusion where 

taller growing forbs gain advantage over as the vegetation sward height increases later 

into the season (Hellstrom et al. 2006).

6.4 Water-regime influences

Species richness was not affected by the timing or frequency of the hay cut (chapter 3) or 

by the addition of N and P (chapter 5). Whereas P was significant in explaining some of 

the species variation at Leaches Meadow, the main determinant of species composition 

from the measured variables at Leaches Meadow from 2010 to 2013 was water-table 

depth. This was significant in explaining species variation on the RDA ordination, but
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was also reflected in the species assemblages at the site where the community changed 

from species tolerant of drier conditions to those tolerant of waterlogging over time 

(section 5.3.2). This was demonstrated by increased dominance of graminoids in 2013 

compared with 2010 and 2011, which was also identified in other studies with increased 

waterlogging (Antheunisse & Verhoeven 2008; Araya, Gowing & Dise 2013). These 

results from chapter 5 support the results of chapter 2 where the relationship between 

above-ground biomass and relations between transpiration and rainfall, was significantly 

correlated by using the ‘Smith calculation’ (Smith 1960).

Although water regime was not included in the hypotheses of this thesis and was 

not an experimental variable here, it was the main driver of plant community change at 

the site and may have been more important in limiting vegetation biomass and nutrient 

uptake than any other resource in this instance. Weather conditions from 2010-2013 were 

extreme events compared to ‘average’ conditions. Drought conditions developed in the 

first half of 2010, and 2011 was the warmest year on record for the UK since records 

began in 1766 (Met Office). Some parts of England recorded their lowest 18-month 

rainfall in at least 100 years (figure 6.1). In huge contrast to this, April 2012 was the 

wettest on record for 230 years, and the period from April to July had the highest rainfall 

in the England and Wales series which extends back to 1766 (figure 6.1). As a 

consequence, soil conditions changed from that of drought stress to waterlogging during 

the timeframe of the experiment. Furthermore, saturated soil conditions resulted in 

restricted harvesting opportunities due to restricted access to the experimental plots 

(Marsh et al. 2013).
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Figure 6.1 October 2010 to March 2012, and April-July 2012 rainfall as a percentage of the 
1971-2000 average (Marsh et al. 2013) LM indicates location of Leaches Meadow.

This dramatic variation in hydrological conditions, would be likely to have had a 

pronounced effect on the nutrient dynamics of Leaches meadow and thus productivity 

and community composition independent of the nutrient-addition experiment as effects 

of fertilization can be overruled by flood events (Beltman, Willems & Giisewell 2007). 

In this thesis, separating out the effects of the treatment additions was possible, but 

changing weather patterns made year a significant variable, therefore making it difficult 

to identify consistent trends across the whole experimental period.

Many studies have investigated the relationship between plant N limitation and 

water availability in arid ecosystems to attempt to ascertain which resource is most 

limiting under dry conditions with the majority of findings indicating that plants are co­

limited by multiple resources (Hooper & Johnson 1999; Harpole, Potts & Suding 2007; 

Elser et a l 2007; Bai, Wu & Xing 2008). There is not necessarily a shift of primary 

limitation from water to N, across a geographic water availability gradient. However, this
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is the opposite of the findings o f Xia & Wan (2008) who found water availability to be 

more important than N availability in regulating plant growth in regions with low annual 

precipitation and positive responses of plant growth to N addition are likely to be 

suppressed by water limitation. Both concepts were found in this thesis; where plant 

biomass was limited by N  (chapter 4, section 4.3.1), N offtake was limited by a 

combination of N and P (chapter 4, section 4.3.2) and that above ground production was 

restricted by soil moisture deficit (chapter 2) present in the drought years of 2010 and 

2011. At the other end of the spectrum following extensive flooding in 2012, the effects 

of the treatment additions were possibly superseded by the effects of water regime, which 

was also observed by Beltman, Willems & Glisewell (2007) who found the effects of 

fertilization on the vegetation response to be eradicated by extreme winter floods and 

spring floods between 1998 and 2001. Nevertheless, they also found that the effects of 

nutrient additions reappeared after these years. Reasons behind the disappearance of 

treatment effect could be due to soil moisture controlling the availability o f nutrients to 

plants in wet meadows, with soil N mineralization rates declining as soil becomes more 

saturated (Araya, Gowing & Dise 2013).

In terms of species composition, a number of studies have found the effect of 

summer flooding to be of primary importance in determining plant survival and biomass 

response (Van de Steeg & Blom 1998; Vervuren, Blom & de Kroon 2003; van Eck et al.

2004), with flood tolerant species occurring at higher elevations and ability to recover 

biomass more quickly than flood sensitive species. Floodplain meadow species also differ 

in their short-term susceptibility to hydrological scenarios, and are more likely to be 

affected by a change from dry to wet conditions than the reverse (Jung, Hoffmann & 

Muller 2009) from the results of experimental manipulation of two contrasting 

hydrological scenarios after just five weeks.
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In Leaches Meadow, functional group composition was significantly different 

between all years, with an increase in graminoids in 2013 relative to legumes (which 

significantly decreased) and forbs (section 5.3.2). Species dominance changed from those 

more tolerant of drying to those more tolerant of waterlogging, which was reflected in the 

species dynamics and the key driver of plant community change (section 5.3.4). 

Sanguisorba officinalis, Anthoxanthum odoratum and Festuca rubra all declined in 2013 

compared with previous years and are known to be intolerant of waterlogging, whereas 

Agrostis stolonifera, Carex disticha and Carex riparia all increased and are much more 

tolerant of waterlogging (Gowing et al. 1997). Alopecurus pratensis was the dominant 

species in 2013 and generally has moderate soil moisture requirements, but can adapt to 

waterlogged conditions due to the possession of large lysigenous lacunae which maintain 

maximum oxygenation of the cortex under conditions of waterlogging (Soper 1959), and 

therefore was able to thrive over other species in 2013 after inundation experienced in the 

previous year.

6.5 Further work

The results of this thesis are based on research and data from four-year field and 

laboratory experiments. Extension of the experimental period in excess of five years 

would provide more substantial evidence and give a clearer indication o f the effects o f  

cutting and P addition to the species composition and nutrient dynamics within a 

floodplain meadow. This P addition experiment would also be relevant on different 

habitats to continue to explore the effect o f P on N cycling in the soil, as current literature 

is scarce. There is also a risk that effects of P on terrestrial ecosystems could be 

overlooked as most recent work has been focussed on the effects of N pollution. However, 

as we have shown that P addition can contribute to plant N uptake and enhance N
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mineralization in the soil; effects of P addition could potentially be two-fold with the 

direct effects of P pollution, and indirect effects on N availability which could enhance 

N pollution. Further work on multiple terrestrial ecosystems in addition to more detailed 

research on floodplains and dry grasslands would provide further evidence for this, 

specifically influences of water regime together with P availability and the subsequent 

effects on the microbial community of floodplain soils.

6.5.1 Hydrological modelling

Altering water-table depth, in conjunction with P application under controlled conditions 

by means of mesocosm experiments would enable further testing of hypotheses relating 

to increases in N mineralization with P addition on floodplain soils. This would remove 

the uncontrolled variability of water-table depth in the field, along with speculation about 

the effects of waterlogging on nutrient dynamics. Further water-table modelling using 

diver data gathered in the field, could also be used to interpret water-table depths using 

the sun exceedance values (SEV) concept for aeration and drying stress (Gowing et al. 

1998).

Given the influence of water-table depth and variation in weather conditions 

between years on the experiment, the next logical step would be to investigate the 

interrelationships between soil water regime, N  mineralization and P availability. This 

would involve repeating the P addition incubation experiment, under a range o f different 

water tensions, which cover the range that N mineralization is particularly sensitive. This 

technique was used by Araya, Gowing & Dise (2013) who demonstrated that soil 

moisture content and soil aeration controlled the availability of N. Including the influence 

of P availability in this hypothesis would contribute further to understanding nutrient 

dynamics and water regime in floodplains and would add to the results of this study.
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6.5.2 Microbial indices

After finding that the addition of P significantly increased the concentration in extraction 

of ammonium and nitrate ions, alluding to increased N mineralization in the soil (section 

4.3.7), the next step would be to measure this in-situ in the field (Raison, Connell & 

Khanna 1987). This would indicate if  the same microbial processes were occurring as in 

the laboratory. Further to this, microbial biomass C and N could be measured to indicate 

if  P addition enhances microbial activity or decreases the total microbial biomass of 

floodplain soils, which has been shown for upland grasslands (Bardgett, Frankland & 

Whittaker 1993; Lovell, Jarvis & Bardgett 1995), but has received very little attention for 

floodplain soils. In addition to microbial biomass, the effect of P addition on 

fungalibacterial biomass ratios (measured by phospholipid fatty acid analysis; PLFA) 

would be useful to assess if  fungal biomass will decrease in plots receiving P as has been 

reported for N (Bardgett & McAlister 1999; Bardgett et al. 1999). PLFA could be used 

as an indicator of change among the microbial community of the soil between floodplain 

meadow sites to determine associations between the prevalence of certain plant species 

and soil microbial groups (Smith et al. 2003). A study focussing on P effects of the 

microbial community of floodplain soils would enhance the results of this thesis.
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APPENDICES

Appendix 1 Diver data output from Leaches Meadow

150 -I

100 -  

50

c
o
n

«  -50
<u
0)

cc

-150 - 

-200  -  

-250 -

Diver 1/2 

Diver 3 /4  

Diver 4/5

208


